The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [21] The unit graph of a left Artinian ring
    Heydari, F.
    Nikmehr, M. J.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (1-2) : 134 - 146
  • [22] The unit graph of a left Artinian ring
    F. Heydari
    M. J. Nikmehr
    Acta Mathematica Hungarica, 2013, 139 : 134 - 146
  • [23] On the Structure of Nil Graph of a Commutative Ring
    Patra, Kuntala
    Begum, Shazida
    MATEMATIKA, 2015, 31 (01) : 37 - 45
  • [24] THE CODIVISOR GRAPH OF A FINITE RING WITH UNITY
    Baruah, Anurag
    Patra, Kuntala
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 169 - 181
  • [25] The Weakly Nilpotent Graph of a Commutative Ring
    Khojasteh, Soheila
    Nikmehr, Mohammad Javad
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 319 - 328
  • [26] Radical-Depended Graph of a Commutative Ring
    Abadi, Batool Zarei Jalal
    Moghimi, Hosein Fazaeli
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2018, 45 (01): : 78 - 85
  • [27] The Cozero-divisor Graph of a Commutative Ring
    Afkhami, M.
    Khashyarmanesh, K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (05) : 753 - 762
  • [28] ON THE TOTAL GRAPH AND ITS COMPLEMENT OF A COMMUTATIVE RING
    Asir, T.
    Chelvam, T. Tamizh
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3820 - 3835
  • [30] Chain dot product graph of a commutative ring
    Alkhamaiseh, Basem
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 105 - 112