The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [1] The annihilating graph of a ring
    Shafiei, Z.
    Maghasedi, M.
    Heydari, F.
    Khojasteh, S.
    MATHEMATICAL SCIENCES, 2018, 12 (01) : 1 - 6
  • [2] A graph associated with the set of all nonzero annihilating ideals of a commutative ring
    Visweswaran, S.
    Patel, Hiren D.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (04)
  • [3] On the complement of a graph associated with the set of all nonzero annihilating ideals of a commutative ring
    Visweswaran, S.
    Sarman, Patat
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [4] THE TOTAL GRAPH OF ANNIHILATING ONE-SIDED IDEALS OF A RING
    Alibemani, Abolfazl
    Hashemi, Ebrahim
    Alhevaz, Abdollah
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 61 - 76
  • [5] THE ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO AN IDEAL
    Aliniaeifard, F.
    Behboodi, M.
    Mehdi-Nezhad, E.
    Rahimi, A. M.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) : 2269 - 2284
  • [6] Some results on a supergraph of the sum annihilating ideal graph of a commutative ring
    Visweswaran, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [7] THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING
    Alibemani, Abolfazl
    Hashemi, Ebrahim
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 379 - 395
  • [8] The Annihilating-Ideal Graph of an Idealization
    Ahrari, M.
    Sabet, Sh. A. Safari
    Amini, B.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1): : 165 - 168
  • [9] The Annihilating-Ideal Graph of an Idealization
    M. Ahrari
    Sh. A. Safari Sabet
    B. Amini
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 165 - 168
  • [10] The graded annihilating submodule graph
    Ahmed, Mamoon
    Moh'd, Fida
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025,