On the difference equation xn+1=axn−l+bxn−k+f(xn−l,xn−k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} )$\end{document}

被引:0
作者
Mahmoud A. E. Abdelrahman
George E. Chatzarakis
Tongxing Li
Osama Moaaz
机构
[1] Mansoura University,Department of Mathematics, Faculty of Science
[2] School of Pedagogical and Technological Education (ASPETE),Department of Electrical and Electronic Engineering Educators
[3] Linyi University,LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing
[4] Linyi University,School of Information Science and Engineering
关键词
Difference equation; Equilibrium point; Local stability; Periodic solution; 39A10; 39A23; 39A30;
D O I
10.1186/s13662-018-1880-8
中图分类号
学科分类号
摘要
In this paper, we study the asymptotic behavior of the solutions of a new class of difference equations xn+1=axn−l+bxn−k+f(xn−l,xn−k),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} ), $$\end{document} where l and k are nonnegative integers, a and b are nonnegative real numbers, the initial values x−s,x−s+1,…,x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{-s}, x_{-s+1},\ldots, x_{0}$\end{document} are positive real numbers, s=max{l,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s=\max\{l,k\}$\end{document}, and f(u,v):(0,∞)2→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f (u,v ): ( 0,\infty ) ^{2}\rightarrow ( 0,\infty ) $\end{document} is a continuous and homogeneous real function of degree zero. We consider the stability, boundedness, and periodicity of the solutions of this equation which is the most general form of linear difference equations. Thus, the results in this paper apply to several other equations that are special cases of the studied equation. Moreover, we present a new method to study periodic solutions of period two.
引用
收藏
相关论文
共 48 条
[1]  
Abdelrahman M.A.E.(2017)Investigation of the new class of the nonlinear rational difference equations Fundam. Res. Dev. Int. 7 59-72
[2]  
Moaaz O.(2013)Attractivity of two nonlinear third order difference equations J. Egypt. Math. Soc. 21 241-247
[3]  
Abo-Zeid R.(2015)On the oscillation of a third order rational difference equation J. Egypt. Math. Soc. 23 62-66
[4]  
Abo-Zeid R.(2003)Global stability of Appl. Math. Lett. 16 173-178
[5]  
Abu-Saris R.M.(1999)On the recursive sequence J. Math. Anal. Appl. 233 790-798
[6]  
DeVault R.(2007)The global attractivity of the rational difference equation Proc. Am. Math. Soc. 135 1133-1140
[7]  
Amleh A.M.(2006)A note on positive non-oscillatory solutions of the difference equation J. Differ. Equ. Appl. 12 495-499
[8]  
Grove E.A.(2006)The behaviour of the positive solutions of the difference equation J. Differ. Equ. Appl. 12 909-918
[9]  
Ladas G.(2003)On the recursive sequence J. Differ. Equ. Appl. 9 721-730
[10]  
Georgiou D.A.(1998)On the recursive sequence Proc. Am. Math. Soc. 126 3257-3261