Stochastic Control of Memory Mean-Field Processes

被引:0
作者
Nacira Agram
Bernt Øksendal
机构
[1] University of Oslo,Department of Mathematics
来源
Applied Mathematics & Optimization | 2019年 / 79卷
关键词
Mean-field stochastic differential equation; Law process; Memory; Path segment spaces; Random probability measures; Stochastic maximum principle; Operator-valued absde; Mean–variance problem; 60H05; 60H20; 60J75; 93E20; 91G80; 91B70;
D O I
暂无
中图分类号
学科分类号
摘要
By a memory mean-field process we mean the solution X(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\cdot )$$\end{document} of a stochastic mean-field equation involving not just the current state X(t) and its law L(X(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(t))$$\end{document} at time t,  but also the state values X(s) and its law L(X(s))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(s))$$\end{document} at some previous times s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<t.$$\end{document} Our purpose is to study stochastic control problems of memory mean-field processes. We consider the space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of measures on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} with the norm ||·||M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|| \cdot ||_{\mathcal {M}}$$\end{document} introduced by Agram and Øksendal (Model uncertainty stochastic mean-field control. arXiv:1611.01385v5, [2]), and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of (time-advanced backward stochastic differential equations (absdes), one of them with values in the space of bounded linear functionals on path segment spaces. As an application of our methods, we solve a memory mean–variance problem as well as a linear–quadratic problem of a memory process.
引用
收藏
页码:181 / 204
页数:23
相关论文
共 24 条
  • [1] Anderson D(2011)A maximum principle for SDEs of mean-field type Appl. Math. Optim. 63 341-356
  • [2] Djehiche B(2009)Mean-field backward stochastic differential equations and related partial differential equations Stoch. Process. Appl. 119 3133-3154
  • [3] Buckdahn R(2013)Control of McKean–Vlasov dynamics versus mean field games Math. Financ. Econ. 7 131-166
  • [4] Li J(2010)Maximum principle for the stochastic optimal control problem with delay and application Automatica 46 1074-1080
  • [5] Peng S(2005)A sufficient maximum principle for optimal control of jump diffusions and applications to finance J. Optim. Theory Appl. 124 511-512
  • [6] Carmona R(2008)Partial information linear quadratic control for jump diffusions SIAM J. Control Optim. 47 1744-1761
  • [7] Delarue F(2017)Some existence results for advanced backward stochastic differential equations with a jump time ESAIM Proc. Surv. 60 84-106
  • [8] Chen L(2015)Optimal control of mean-field jump-diffusion systems with delay: a stochastic maximum principle approach J. Comput. Appl. Math. 279 13-30
  • [9] Wu Z(2011)Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations Adv. Appl. Probab. 43 572-596
  • [10] Framstad NC(2009)Anticipated backward stochastic differential equations Ann. Probab. 37 877-902