Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups

被引:0
作者
V. S. Guliyev
机构
[1] Baku State University,Institute of Applied Mathematics
[2] Dumlupinar University,Department of Mathematics
[3] RUDN University,S.M. Nikolskii Institute of Mathematics
来源
Analysis and Mathematical Physics | 2020年 / 10卷
关键词
Carnot group; Fractional maximal operator; Generalized weighted Morrey space; Commutator; Homogeneous dimension; Primary 42B25; 42B35; 43A15; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we shall give a characterization for the strong and weak type Spanne type boundedness of the fractional maximal operator Mα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\alpha }$$\end{document}, 0≤α<Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <Q$$\end{document} on Carnot group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}$$\end{document} on generalized weighted Morrey spaces Mp,φ(G,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p,\varphi }({{\mathbb {G}}},w)$$\end{document}, where Q is the homogeneous dimension of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}$$\end{document}. Also we give a characterization for the Spanne type boundedness of the fractional maximal commutator operator Mb,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{b,\alpha }$$\end{document} on generalized weighted Morrey spaces.
引用
收藏
相关论文
共 70 条
[1]  
Bernardis A(2006)Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type J. Math. Anal. Appl. 322 825-846
[2]  
Hartzstein S(2010)Boundedness of the fractional maximal operator in local Morrey-type spaces Complex Var. Elliptic Equ. 55 739-758
[3]  
Pradolini G(2017)Parametric Marcinkiewicz integral operator and its higher order commutators on generalized weighted Morrey spaces Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. Math. 37 24-32
[4]  
Burenkov V(2018)Commutators of fractional maximal operator on generalized Orlicz–Morrey spaces Positivity 22 141-158
[5]  
Gogatishvili A(2017)Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups Math. Notes. 102 722-734
[6]  
Guliyev VS(2017)Elliptic equations with measurable coefficients in generalized weighted Morrey spaces Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 43 197-213
[7]  
Mustafayev R(2018)Fractional maximal operator and its commutators in generalized Morrey spaces on Heisenberg group Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 44 304-317
[8]  
Deringoz F(2009)Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces J Inequal Appl. 503948 1-20
[9]  
Deringoz F(2013)Boundedness of fractional maximal operator and their higher order commutators in generalized Morrey spaces on Carnot groups Acta Math Sci Ser B Engl Ed. 33 1329-1346
[10]  
Guliyev VS(2012)Generalized weighted Morrey spaces and higher order commutators of sublinear operators Eurasian Math J. 3 33-61