On Hermitian generalized inverses and positive semidefinite generalized inverses

被引:0
作者
Xifu Liu
机构
[1] East China Jiaotong University,School of Science
来源
Indian Journal of Pure and Applied Mathematics | 2014年 / 45卷
关键词
Generalized inverse; Hermitian generalized inverse; positive semidefinite generalized inverse;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this paper is to investigate the Hermitian and positive semidefinite generalized inverses of a square matrix. First, we present some conditions for the existence of Hermitian and positive semidefinite generalized inverses. Further, expressions of these generalized inverses are given. Finally, we give two numerical examples to demonstrate our results.
引用
收藏
页码:443 / 459
页数:16
相关论文
共 15 条
[1]  
Tian Y.(2006)On common generalized inverses of a pair of matrices Linear Multilinear Algebra 54 195-209
[2]  
Takane Y.(1976)Hermitian and nonnegative definite solutions of linear matrix equations SIAMJ. Appl. Math. 31 579-585
[3]  
Khatri C. G.(2011)An expression of the general common least-squares solution to a pair of matrix equations with applications Comput. Math. Appl. 61 3071-3078
[4]  
Mitra S. K.(2009)On a matrix decomposition of Hartwig and Spindelbock Linear Algebra Appl. 430 2798-2812
[5]  
Liu X.(2008)Some generalized inverses of partition matrix and quotient identity of generalized Schur complement Appl. Math. Comput. 196 174-184
[6]  
Yang H.(1966)Note on the generalized inverse of a matrix product SIAM Rev. 8 518-521
[7]  
Baksalary O. M.(2010)Equalities and inequalities for inertias of hermitian matrices with applications Linear Algebra Appl. 433 263-296
[8]  
Styan G. P. H.(2001)How to characterize equalities for the Moore-Penrose inverse of a matrix Kyungpook Math. J. 41 1-15
[9]  
Trenkler G.(2005)The general solution to a system of real quaternion matrix equations Comput. Math. Appl. 49 665-675
[10]  
Sheng X.(undefined)undefined undefined undefined undefined-undefined