Regularity for anisotropic fully nonlinear integro-differential equations

被引:0
|
作者
Luis A. Caffarelli
Raimundo Leitão
José Miguel Urbano
机构
[1] University of Texas at Austin,Department of Mathematics
[2] University of Coimbra,CMUC, Department of Mathematics
来源
Mathematische Annalen | 2014年 / 360卷
关键词
35J60; 47G20; 35D40; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fully nonlinear integro-differential equations governed by kernels that have different homogeneities in different directions. We prove a nonlocal version of the ABP estimate, a Harnack inequality and the interior C1,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, \gamma }$$\end{document} regularity, extending the results of Caffarelli and Silvestre (Comm Pure Appl Math 62:597–638, 2009) to the anisotropic case.
引用
收藏
页码:681 / 714
页数:33
相关论文
共 50 条