Improving the unsupervised LBG clustering algorithm performance in image segmentation using principal component analysis

被引:0
作者
Ashkan Parsi
Ali Ghanbari Sorkhi
Morteza Zahedi
机构
[1] Shahrood University of Technology,Department of Computer Engineering and Information Technology
来源
Signal, Image and Video Processing | 2016年 / 10卷
关键词
Unsupervised learning; Clustering algorithms; Principal component analysis; Eigenvalue and eigenvector; Image segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new method for improving unsupervised LBG clustering algorithm has been proposed. This algorithm belongs to the hard and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-means vector quantization groups and drive directly from a simpler LBG. The defect of the LBG algorithm is to partition cluster in different iterations blindly. The basic idea of this paper is to use of principal component analysis and eigenvalue for handling this issue. Utilizing the eigenvalue in each step of LBG algorithm, it can either prevent from blindly splitting of vector or aggregation of data points in each cluster undoubtedly. The proficiency of eigenvalue-based LBG (E-LBG) algorithm is tested against other clustering algorithm such as Fuzzy c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-Means and Gustafson–Kessel. On standard database (Iris database) and acceptable results are obtained. Comparing the obtained result of simple LBG with E-LBG in term of time and accuracy has shown that the better performance of E-LBG method in segmentation of images.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 55 条
[1]  
Hofmann T(1997)Pairwise data clustering by deterministic annealing IEEE Trans. Pattern Anal. Mach. Intell. 19 1-14
[2]  
Buhmann JM(2010)Data clustering: 50 years beyond k-means Pattern Recognit. Lett. 31 651-666
[3]  
Jain AK(2008)Hierarchical initialization approach for k-means clustering Pattern Recognit. Lett. 29 787-795
[4]  
Lu JF(2007)A tutorial on spectral clustering Stat. Comput. 17 395-416
[5]  
Tang JB(2005)An algorithm for image clustering and compression Turk. J. Elec. Eng. Comp. Sci. 13 79-92
[6]  
Tang ZM(2012)A fully unsupervised color textured image segmentation algorithm using weighted mean histograms features Signal Image Video Process. 6 197-209
[7]  
Yang JY(2011)Algorithm for image segmentation using statistical models based on intensity features Acta Optica Sinica 31 1-6
[8]  
Luxburg U(2012)An unsupervised image clustering method based on EEMD image histogram J. Inf. Hiding Multimed. Signal Process. 3 151-163
[9]  
Kaya M(2011)Vector-valued images segmentation based on improved variational GAC model Control Decis. 26 909-915
[10]  
Rahman MM(2010)Segmentation algorithm for SAR images based on the persistence and clustering in the contourlet domain Acta Optica Sinica 30 1977-1983