A threshold phenomenon for embeddings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^m_0}$$\end{document} into Orlicz spaces

被引:2
作者
Luca Martinazzi
机构
[1] ETH Zurich,
关键词
35J40;
D O I
10.1007/s00526-009-0239-0
中图分类号
学科分类号
摘要
Given an open bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset\mathbb {R}^{2m}}$$\end{document} with smooth boundary, we consider a sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(u_k)_{k\in\mathbb{N}}}$$\end{document} of positive smooth solutions to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} (-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} \quad\quad\quad\quad\quad {\rm in}\,\Omega\\ u_k=\partial_\nu u_k=\cdots =\partial_\nu^{m-1} u_k=0 \quad {\rm on }\, \partial \Omega, \end{array}\right.$$\end{document}where λk → 0+. Assuming that the sequence is bounded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^m_0(\Omega)}$$\end{document} , we study its blow-up behavior. We show that if the sequence is not precompact, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\liminf_{k\to\infty}\|u_k\|^2_{H^m_0}:=\liminf_{k\to\infty}\int\limits_\Omega u_k(-\Delta)^m u_k dx\geq \Lambda_1,$$\end{document}where Λ1 = (2m − 1)!vol(S2m) is the total Q-curvature of S2m.
引用
收藏
相关论文
共 38 条
[1]  
Adams D.(1998)A sharp inequality of J. Moser for higher order derivatives Ann. Math. 128 385-398
[2]  
Adimurthi O.(2004)Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality Comm. Partial Differ. Equ. 29 295-322
[3]  
Druet M.(2000)Global compactness properties of semilinear elliptic equations with critical exponential growth J. Funct. Anal. 175 125-167
[4]  
Adimurthi S.(1959)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Comm. Pure Appl. Math. 12 623-727
[5]  
Struwe A.(1984)Convergence de solutions de C. R. Acad. Sc. Paris 298 389-392
[6]  
Agmon L.(1985)-systèmes et application aux surfaces à courbure moyenne constante Arch. Rat. Mech. Anal. 89 21-56
[7]  
Douglis H.(1991)Convergence of solutions of Comm. Partial Differ. Equ. 16 1223-1253
[8]  
Niremberg J.M.(1980)-Systems or how to blow bubbles Partial Differ. Equ. 5 773-789
[9]  
Brézis H.(1991)Uniform estimates and blow-up behaviour for solutions of −Δ Duke Math. J. 63 615-622
[10]  
Coron J.M.(2004) =  J. Differ. Equ. 205 466-487