Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes

被引:0
作者
Han Li
Kai Yang
Dehui Wang
机构
[1] Jilin University,School of Mathematics
来源
Computational Statistics | 2017年 / 32卷
关键词
SETINAR process; Integer-valued threshold models; Confidence region;
D O I
暂无
中图分类号
学科分类号
摘要
This article redefines the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under a weaker condition that the second moment is finite, and studies the quasi-likelihood inference for the new model. The ergodicity of the new processes is discussed. Quasi-likelihood estimators for the model parameters and the asymptotic properties are obtained. Confidence regions of the parameters based on the quasi-likelihood method are given. A simulation study is conducted for the evaluation of the proposed approach and an application to a real data example is provided.
引用
收藏
页码:1597 / 1620
页数:23
相关论文
共 73 条
[1]  
Al-Osh MA(1987)First-order integer-valued autoregressive (INAR(1)) process J Time Ser Anal 8 261-275
[2]  
Alzaid AA(1991)Binomial autoregressive moving average models Commun Stat Stoch Models 7 261-282
[3]  
Al-Osh MA(1992)First order autoregressive time series with negative binomial and geometric marginals Commun Stat Theory Methods 21 2483-2492
[4]  
Alzaid AA(1988)First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties Stat Neerlandica 42 53-61
[5]  
Al-Osh MA(2011)Quasi-likelihood estimation in stationary and nonstationary autoregressive models with random coefficients Stat Sin 21 973-999
[6]  
Alzaid AA(1998)The exact quasi-likelihood of time-dependent ARMA models J Stat Plan Inference 68 31-45
[7]  
Alzaid AA(2006)Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients Stat Inference Stoch Process 9 279-330
[8]  
Al-Osh MA(2014)Quasi-likelihood inference for negative binomial time series models J Time Ser Anal 35 55-78
[9]  
Aue A(1991)The integer-valued autoregressive (INAR( J Time Ser Anal 12 129-142
[10]  
Horváth L(1996))) model J Am Stat Assoc 91 251-257