A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase

被引:0
|
作者
Sunil Chhita
Fabio Lucio Toninelli
机构
[1] Durham University,Department of Mathematical Sciences
[2] Université Claude Bernard Lyon 1,UMR 5208, CNRS, Institut Camille Jordan, Univ Lyon
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} of the speed of growth v(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\rho)}$$\end{document} as a function of the average slope ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} satisfies detHρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho > 0}$$\end{document} (“isotropic KPZ class”) or detHρ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho \le 0}$$\end{document} (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable, so that Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^2}$$\end{document} , with 2-periodic weights. If ρ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\ne0}$$\end{document} , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detHρ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho < 0}$$\end{document} : the model belongs to the AKPZ class. When ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable at ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} and we extract the singularity of the eigenvalues of Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} for ρ∼0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\sim 0}$$\end{document} .
引用
收藏
页码:483 / 516
页数:33
相关论文
共 50 条
  • [41] Dimensional effects on anisotropic grain growth
    Holm, EA
    Hassold, GN
    Miodownik, MA
    RECRYSTALLIZATION AND GRAIN GROWTH, VOLS 1 AND 2, 2001, : 239 - 244
  • [42] Phase diagram of the one-dimensional anisotropic Kondo-necklace model
    Mahmoudian, S.
    Langari, A.
    PHYSICAL REVIEW B, 2008, 77 (02)
  • [43] Entanglement and quantum phase transition in the one-dimensional anisotropic XY model
    Ma, Fu-Wu
    Liu, Sheng-Xin
    Kong, Xiang-Mu
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [44] Various quantum measures and quantum phase transition within one-dimensional anisotropic spin-1/2 Heisenberg XXZ model
    Sun, Wen-Yang
    Wang, Dong
    Ye, Liu
    PHYSICA B-CONDENSED MATTER, 2017, 524 : 27 - 33
  • [45] KINETIC PHASE-DIAGRAM FOR CRYSTAL-GROWTH - A (1+1)-DIMENSIONAL MODEL - REPLY
    PHILLIPS, R
    CHRZAN, DC
    PHYSICAL REVIEW LETTERS, 1992, 68 (18) : 2855 - 2855
  • [46] KINETIC PHASE-DIAGRAM FOR CRYSTAL-GROWTH - A (1+1)-DIMENSIONAL MODEL - COMMENT
    PLISCHKE, M
    SIEGERT, M
    PHYSICAL REVIEW LETTERS, 1992, 68 (18) : 2854 - 2854
  • [47] Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion
    Meca, Esteban
    Shenoy, Vivek B.
    Lowengrub, John
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [48] A KPZ growth model with possibly unbounded data: Correctness and blow-up
    Gladkov, Alexander
    Guedda, Mohammed
    Kersner, Robert
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) : 2079 - 2091
  • [49] Quantized Berry Phase in the Spin-1=2 XXZ Model on the Anisotropic Kagome Lattice
    Aoyagi, Katsumi
    Ishii, Kota
    Hatsugai, Yasuhiro
    Kawarabayashi, Tohru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (06)
  • [50] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    Chen Cheng
    Chen Zheng
    Zhang Jing
    Yang Tao
    Du Xiu-Juan
    CHINESE PHYSICS B, 2012, 21 (11)