A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase

被引:0
|
作者
Sunil Chhita
Fabio Lucio Toninelli
机构
[1] Durham University,Department of Mathematical Sciences
[2] Université Claude Bernard Lyon 1,UMR 5208, CNRS, Institut Camille Jordan, Univ Lyon
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} of the speed of growth v(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\rho)}$$\end{document} as a function of the average slope ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} satisfies detHρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho > 0}$$\end{document} (“isotropic KPZ class”) or detHρ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho \le 0}$$\end{document} (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable, so that Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^2}$$\end{document} , with 2-periodic weights. If ρ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\ne0}$$\end{document} , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detHρ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho < 0}$$\end{document} : the model belongs to the AKPZ class. When ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable at ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} and we extract the singularity of the eigenvalues of Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} for ρ∼0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\sim 0}$$\end{document} .
引用
收藏
页码:483 / 516
页数:33
相关论文
共 50 条
  • [31] Phase transition in the three-dimensional anisotropic Heisenberg antiferromagnetic model
    Ricardo De Sousa, J.
    Plascak, J.A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 237 (1-2): : 66 - 68
  • [32] Phase transition in the three-dimensional anisotropic Heisenberg antiferromagnetic model
    de Sousa, JR
    Plascak, JA
    PHYSICS LETTERS A, 1997, 237 (1-2) : 66 - 68
  • [33] Phase diagram for the two-dimensional quantum anisotropic XY model
    Pires, AST
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 260 (03) : 397 - 399
  • [34] KINETIC PHASE-DIAGRAM FOR CRYSTAL-GROWTH - A (1+1)-DIMENSIONAL MODEL
    PHILLIPS, R
    CHRZAN, DC
    PHYSICAL REVIEW LETTERS, 1991, 67 (02) : 220 - 223
  • [35] A DEFORMATION MODEL FOR ANISOTROPIC SUPERPLASTICITY IN 2 PHASE ALLOYS
    PARTRIDGE, PG
    MCDARMAID, DS
    BOWEN, AW
    ACTA METALLURGICA, 1985, 33 (04): : 571 - 577
  • [36] ANISOTROPIC SUPERCONDUCTIVITY IN THE 2-DIMENSIONAL HUBBARD-MODEL
    ZIELINSKI, J
    MIERZEJEWSKI, M
    ENTEL, P
    GRABOWSKI, R
    JOURNAL OF SUPERCONDUCTIVITY, 1995, 8 (01): : 135 - 141
  • [37] CRITICAL PROPERTIES OF 2-DIMENSIONAL ANISOTROPIC HEISENBERG MODEL
    BINDER, K
    LANDAU, DP
    PHYSICAL REVIEW B, 1976, 13 (03) : 1140 - 1155
  • [38] ANISOTROPIC SUPERCONDUCTIVITY IN THE 2-DIMENSIONAL HUBBARD-MODEL
    MIERZEJEWSKI, M
    ZIELINSKI, J
    PHYSICA C, 1993, 218 (3-4): : 424 - 428
  • [39] Entanglement and quantum phase transition in the anisotropic two-dimensional XXZ model
    Lima, L. S.
    SOLID STATE COMMUNICATIONS, 2020, 309
  • [40] The phase diagram and critical properties of the two-dimensional anisotropic XY model
    Pires, A. S. T.
    Lima, L. S.
    Gouvea, M. E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (01)