A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase

被引:0
|
作者
Sunil Chhita
Fabio Lucio Toninelli
机构
[1] Durham University,Department of Mathematical Sciences
[2] Université Claude Bernard Lyon 1,UMR 5208, CNRS, Institut Camille Jordan, Univ Lyon
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} of the speed of growth v(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\rho)}$$\end{document} as a function of the average slope ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho}$$\end{document} satisfies detHρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho > 0}$$\end{document} (“isotropic KPZ class”) or detHρ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho \le 0}$$\end{document} (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable, so that Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}^2}$$\end{document} , with 2-periodic weights. If ρ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\ne0}$$\end{document} , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detHρ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm det} H_\rho < 0}$$\end{document} : the model belongs to the AKPZ class. When ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v(\cdot)}$$\end{document} is not differentiable at ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho=0}$$\end{document} and we extract the singularity of the eigenvalues of Hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\rho}$$\end{document} for ρ∼0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\sim 0}$$\end{document} .
引用
收藏
页码:483 / 516
页数:33
相关论文
共 50 条
  • [1] A (2+1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase
    Chhita, Sunil
    Toninelli, Fabio Lucio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (02) : 483 - 516
  • [2] Hydrodynamic limit of a (2+1)-dimensional crystal growth model in the anisotropic KPZ class
    Lerouvillois, Vincent
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 35
  • [3] An Exactly Solved Model of Three-Dimensional Surface Growth in the Anisotropic KPZ Regime
    Praehofer, M.
    Spohn, H.
    Journal of Statistical Physics, 88 (5-6):
  • [4] An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime
    Prahofer, M
    Spohn, H
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) : 999 - 1012
  • [5] An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime
    M. Prähofer
    H. Spohn
    Journal of Statistical Physics, 1997, 88 : 999 - 1012
  • [6] Two-dimensional anisotropic KPZ growth and limit shapes
    Borodin, Alexei
    Toninelli, Fabio
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [7] Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure
    Borodin, Alexei
    Ferrari, Patrik L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [8] Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model
    Kelling, J.
    Odor, G.
    Nagy, M. F.
    Schulz, H.
    Heinig, K-H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 210 (01): : 175 - 187
  • [9] Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class
    Legras, Martin
    Toninelli, Fabio Lucio
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) : 620 - 666
  • [10] Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model
    J. Kelling
    G. Ódor
    M. F. Nagy
    H. Schulz
    K. -H. Heinig
    The European Physical Journal Special Topics, 2012, 210 : 175 - 187