Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer

被引:0
|
作者
Vladimir P. Zhdanov
机构
[1] Chalmers University of Technology,Section of Biological Physics, Department of Physics
[2] Boreskov Institute of Catalysis,undefined
[3] Russian Academy of Sciences,undefined
来源
关键词
Vesicles; Support; Multivalent ligand-receptor interaction;
D O I
暂无
中图分类号
学科分类号
摘要
The interaction of exosomes (cell-secreted ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}100 nm-sized extracellular vesicles) or membrane-enveloped virions with cellular lipid membranes is often mediated by relatively weak ligand-receptor bonds. Interactions of this type can be studied using vesicles and observing their attachment to receptors located in a lipid bilayer formed at a solid surface. The contact region between a vesicle and the supported lipid bilayer and accordingly the number of ligand-receptor pairs there can be increased by deforming a vesicle. Herein, I (i) estimate theoretically the corresponding deformation energy assuming a disk-like or elongated shape of vesicles, (ii) present the equations allowing one to track such deformations by employing total internal reflection fluorescence microscopy and surface plasmon resonance, and (iii) briefly discuss some related experimental studies.
引用
收藏
页码:395 / 400
页数:5
相关论文
共 50 条
  • [31] Structural defects of a supported lipid bilayer induced by photosensitized lipid oxidation
    Baxter, Ashley M.
    Wittenberg, Nathan J.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 365A - 365A
  • [32] Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation
    Baxter, Ashley M.
    Jordan, Luke R.
    Kullappan, Monicka
    Wittenberg, Nathan J.
    LANGMUIR, 2021, 37 (19) : 5753 - 5762
  • [33] Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy
    Kaasgaard, T
    Mouritsen, OG
    Jorgensen, K
    FEBS LETTERS, 2002, 515 (1-3) : 29 - 34
  • [34] Tethered lipid bilayer membranes assembly on gold by fusion of functionalized lipid vesicles
    Wang, Xi
    Shindel, Matthew M.
    Wang, Szu-Wen
    Ragan, Regina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [35] Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles
    Efodili, Emanuela
    Knight, Ashlynn
    Mirza, Maryem
    Briones, Cedric
    Lee, Il-Hyung
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2024, 1866 (02):
  • [36] Electrical properties of supported lipid bilayer membranes
    Wiegand, G
    Arribas-Layton, N
    Hillebrandt, H
    Sackmann, E
    Wagner, P
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (16): : 4245 - 4254
  • [37] Quantification of the Layer of Hydration of a Supported Lipid Bilayer
    Zwang, Theodore J.
    Fletcher, Will R.
    Lane, Thomas J.
    Johal, Malkiat S.
    LANGMUIR, 2010, 26 (07) : 4598 - 4601
  • [38] Supported lipid bilayer stripping by buffer flow
    Monson, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [39] Modification of a supported lipid bilayer by polyelectrolyte adsorption
    Feng, ZV
    Granick, S
    Gewirth, AA
    LANGMUIR, 2004, 20 (20) : 8796 - 8804
  • [40] Supported lipid bilayer/carbon nanotube hybrids
    Zhou, Xinjian
    Moran-Mirabal, Jose M.
    Craighead, Harold G.
    McEuen, Paul L.
    NATURE NANOTECHNOLOGY, 2007, 2 (03) : 185 - 190