Approximate controllability of second-order neutral stochastic differential equations with infinite delay and Poisson jumps

被引:0
|
作者
Muthukumar Palanisamy
Rajivganthi Chinnathambi
机构
[1] Gandhigram Rural Institute - Deemed University,Department of Mathematics
[2] Gandhigram Rural Institute - Deemed University,Department of Mathematics
来源
Journal of Systems Science and Complexity | 2015年 / 28卷
关键词
Approximate controllability; Hilbert space; Poisson jumps; second-order neutral stochastic differential equations; semigroup theory;
D O I
暂无
中图分类号
学科分类号
摘要
The modelling of risky asset by stochastic processes with continuous paths, based on Brownian motions, suffers from several defects. First, the path continuity assumption does not seem reasonable in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.
引用
收藏
页码:1033 / 1048
页数:15
相关论文
共 50 条