Genotypic Variability Among Soybean Genotypes Under NaCl Stress and Proteome Analysis of Salt-Tolerant Genotype

被引:0
|
作者
Khalid Rehman Hakeem
Faheema Khan
Ruby Chandna
Tariq Omer Siddiqui
Muhammad Iqbal
机构
[1] Department of Botany,Faculty of Forestry
[2] Faculty of Science,Department of Microbiology
[3] Universiti Putra Malaysia (UPM),undefined
[4] King Saud University,undefined
来源
关键词
Lipid peroxidation; Oxidative stress; Proline; Proteomics; Salt tolerance; Soybean; 2D electrophoresis;
D O I
暂无
中图分类号
学科分类号
摘要
The present investigation was conducted to evaluate salt tolerance in ten genotypes of soybean (Glycine max L.). Twelve-day-old seedlings, grown hydroponically, were treated with 0, 25, 50, 75, 100, 125 and 150 mM NaCl for 10 days. Growth, lipid peroxidation and antioxidant enzyme activities were evaluated. Growth, measured in terms of length, fresh weight and dry weight of plants, was drastically reduced in Pusa-24 while there was little effect of NaCl treatment on Pusa-37 genotype of soybean. High level of lipid peroxidation was observed in Pusa-24 as indicated by increased level of malondialdehyde. Activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were maximum in Pusa-37 where 9-, 1-, 5- and 6-fold increase over control were observed, respectively. The results suggested that Pusa-24 and Pusa-37 are salt-sensitive and salt-tolerant genotype of soybean, respectively, and antioxidant defence system is involved in conferring the sensitiveness and tolerance in these genotypes. Salt-tolerant genotype Pusa-37, was further analysed by 2-dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the present study, 173 protein spots were identified. Of these, 40 proteins were responsive to salinity in that they were either up- or downregulated. This study could help us in identifying the possible regulatory switches (gene/s) controlling novel proteins of the salt-tolerant genotype of the crop plants and their possible role in defence mechanism.
引用
收藏
页码:2309 / 2329
页数:20
相关论文
共 50 条
  • [1] Genotypic Variability Among Soybean Genotypes Under NaCl Stress and Proteome Analysis of Salt-Tolerant Genotype
    Hakeem, Khalid Rehman
    Khan, Faheema
    Chandna, Ruby
    Siddiqui, Tariq Omer
    Iqbal, Muhammad
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 168 (08) : 2309 - 2329
  • [2] Phenotypic and genotypic characterization of salt-tolerant wheat genotypes
    J. L. Díaz De León
    R. Escoppinichi
    R. Zavala-Fonseca
    T. Castellanos
    M. S. Röder
    A. Mujeeb-Kazi
    Cereal Research Communications, 2010, 38 : 15 - 22
  • [3] Phenotypic and Genotypic Characterization of Salt-Tolerant Wheat Genotypes
    Diaz De Leon, J. L.
    Escoppinichi, R.
    Zavala-Fonseca, R.
    Castellanos, T.
    Roeder, M. S.
    Mujeeb-Kazi, A.
    CEREAL RESEARCH COMMUNICATIONS, 2010, 38 (01) : 15 - 22
  • [4] Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress
    Cheng, Ye
    Cheng, Xiangqiang
    Wei, Kai
    Wang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [5] GENOTYPIC RESPONSES TO SALINITY - DIFFERENCES BETWEEN SALT-SENSITIVE AND SALT-TOLERANT GENOTYPES OF TOMATO
    RUSH, DW
    EPSTEIN, E
    PLANT PHYSIOLOGY, 1976, 57 (02) : 162 - 166
  • [6] Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress
    Ashraf, Muhammad
    Afzal, Muhammad
    Ahmad, Rashid
    Maqsood, Muhammad A.
    Shahzad, Sher M.
    Tahir, Mukkram A.
    Akhtar, Naeem
    Aziz, Ahsan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (04) : 385 - 398
  • [7] Evaluation of Cotton Germplasm Against Salt Stress for Development of Salt-Tolerant Genotypes
    Rehman, Abdul
    Iqbal, Muhammad
    GESUNDE PFLANZEN, 2022, 74 (04): : 947 - 960
  • [8] Proteome analysis of soybean hypocotyl and root under salt stress
    K. Aghaei
    A. A. Ehsanpour
    A. H. Shah
    S. Komatsu
    Amino Acids, 2009, 36 : 91 - 98
  • [9] Proteome analysis of soybean hypocotyl and root under salt stress
    Aghaei, K.
    Ehsanpour, A. A.
    Shah, A. H.
    Komatsu, S.
    AMINO ACIDS, 2009, 36 (01) : 91 - 98
  • [10] Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes
    Kiran, Sevinc
    Kusvuran, Sebnem
    Ozkay, Fatma
    Ellialtioglu, S. Sebnem
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2019, 43 (06) : 593 - 602