Dirichlet boundary value correction using Lagrange multipliers

被引:0
作者
Erik Burman
Peter Hansbo
Mats G. Larson
机构
[1] University College London,Department of Mathematics
[2] Jönköping University,Mechanical Engineering
[3] Umeå University,Department of Mathematics and Mathematical Statistics
来源
BIT Numerical Mathematics | 2020年 / 60卷
关键词
Boundary value correction; Lagrange multiplier; Dirichlet boundary conditions; 65N30; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a boundary value correction approach for cases when curved boundaries are approximated by straight lines (planes) and Lagrange multipliers are used to enforce Dirichlet boundary conditions. The approach allows for optimal order convergence for polynomial order up to 3. We show the relation to a Taylor series expansion approach previously used in the context of Nitsche’s method and, in the case of inf-sup stable multiplier methods, prove a priori error estimates with explicit dependence on the meshsize and distance between the exact and approximate boundary.
引用
收藏
页码:235 / 260
页数:25
相关论文
共 27 条
  • [1] Bramble JH(1972)Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections Math. Comput. 26 869-879
  • [2] Dupont T(2018)A cut finite element method with boundary value correction Math. Comput. 87 633-657
  • [3] Thomée V(2018)Fictitious domain method with boundary value correction using penalty-free Nitsche method J. Numer. Math. 26 77-95
  • [4] Burman E(2018)The shifted boundary method for embedded domain computations. Part I: poisson and Stokes problems J. Comput. Phys. 372 972-995
  • [5] Hansbo P(2018)The shifted boundary method for embedded domain computations. Part II: linear advection–diffusion and incompressible Navier–Stokes equations J. Comput. Phys. 372 996-1026
  • [6] Larson MG(1995)On some techniques for approximating boundary conditions in the finite element method J. Comput. Appl. Math. 63 139-148
  • [7] Boiveau T(2013)A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary Numer. Math. 123 607-628
  • [8] Burman E(1997)The mortar element method for three-dimensional finite elements RAIRO Modél. Math. Anal. Numér. 31 289-302
  • [9] Claus S(1998)Stability estimates of the mortar finite element method for East–West J. Numer. Math. 6 249-263
  • [10] Larson M(2001)-dimensional problems SIAM J. Numer. Anal. 39 519-538