The commutant and similarity invariant of analytic Toeplitz operators on Bergman space

被引:0
作者
Chun-lan Jiang
Yu-cheng Li
机构
[1] Hebei Normal University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
Bergman space; analytic Toeplitz operators; invariant subspace; commutant; similarity invariant; -group; 32A36; 46J40; 47A15;
D O I
暂无
中图分类号
学科分类号
摘要
The famous von Neumann-Wold Theorem tells us that each analytic Toeplitz operator with n + 1-Blaschke factors is unitary to n + 1 copies of the unilateral shift on the Hardy space. It is obvious that the von Neumann-Wold Theorem does not hold in the Bergman space. In this paper, using the basis constructed by Michael and Zhu on the Bergman space we prove that each analytic Toeplitz operator MB(z) is similar to n + 1 copies of the Bergman shift if and only if B(z) is an n + 1-Blaschke product. From the above theorem, we characterize the similarity invariant of some analytic Toeplitz operators by using K0-group term.
引用
收藏
页码:651 / 664
页数:13
相关论文
共 25 条
[1]  
Michael S.(2003)Generalized factorization in Hardy spaces and the commutant of Toeplitz operators Canad J Math 55 379-400
[2]  
Zhu K.(1978)The commutant of an analytic Toeplitz operator Trans Amer Math Soc 239 1-31
[3]  
Cowen C. C.(1973)The commutant of analytic Toeplitz operators Trans Amer Math Soc 184 261-273
[4]  
Deddens J. A.(1967)Reducing subspace of analytic Toeplitz operators Duck Math J 34 175-181
[5]  
Wong T. K.(1976)The commutant of certain analytic Toeplitz operators Proc Amer Math Soc 54 165-169
[6]  
Nordgren E.(2000)Reducing subspaces for a class of multiplication operators J London Math Soc 62 553-568
[7]  
Thomson J.(2004)Reducing subspace of analytic Toeplitz operators on the Bergman space Integr Equ Oper Theory 49 387-395
[8]  
Zhu K.(1999)Products of Hankel and Toeplitz operators on the Bergman space J Funct Anal 169 289-313
[9]  
Hu J. Y.(2002)-group of Banach Algebra and strongly irreducible decomposition of operators J Operator Theory 48 235-253
[10]  
Sun S. H.(1978)Complex geometry and operator theory Acta Math 141 187-261