Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

被引:0
作者
Zhongwang Dou
Peter J. Ireland
Andrew D. Bragg
Zach Liang
Lance R. Collins
Hui Meng
机构
[1] University at Buffalo,Department of Mechanical and Aerospace Engineering
[2] Cornell University,Sibley School of Mechanical and Aerospace Engineering
[3] Duke University,Department of Civil and Environmental Engineering
来源
Experiments in Fluids | 2018年 / 59卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324–332; de Jong et al., Int J Multiphas Flow 36:324–332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow (Rλ=357\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_\lambda }=357$$\end{document}) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$St=0.09$$\end{document}, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$St=3.46$$\end{document}, standard deviation 0.57). For comparison, DNS was conducted under similar conditions (Rλ=398\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R_\lambda }=398$$\end{document}; St=0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$St=0.10$$\end{document} and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$St$$\end{document} at small particle separations, r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}, and decreases with St\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$St$$\end{document} at large r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}, indicating the dominance of “path-history” and “inertial filtering” effects, respectively. However, at small r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}, while finite laser thickness also overestimates mean inward RV at small r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.
引用
收藏
相关论文
共 118 条
[1]  
Ayyalasomayajula S(2008)Modeling inertial particle acceleration statistics in isotropic turbulence Phys Fluids 92 023029-4508
[2]  
Warhaft Z(2014)New insights from comparing statistical theories for inertial particles in turbulence: II. Relative velocities New J Phys 47 4501-251
[3]  
Collins LR(2015)Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence Phys Rev E 536 219-245
[4]  
Bragg AD(2008)Hybrid digital holographic imaging system for three-dimensional dense particle field measurement Appl Optics 19 239-593
[5]  
Collins LR(2005)Clustering of aerosol particles in isotropic turbulence J Fluid Mech 782 567-515
[6]  
Bragg AD(2013)Higher order multi-frame particle tracking velocimetry Exp Fluids 107 244501-332
[7]  
Ireland PJ(2002)Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development Pharmaceut Res 46 499-986
[8]  
Collins LR(2015)On the role of the history force for inertial particles in turbulence J Fluid Mech 36 324-209
[9]  
Cao L(2011)Memory effects are relevant for chaotic advection of inertial particles Phys Rev Lett 27 035305-345
[10]  
Pan G(2008)Dissipation rate estimation from PIV in zero-mean isotropic turbulence Exp Fluids 434 971-4505