Atomistic tight-binding computations in the new class of CdSe/AlP II–VI core/III–V shell nanocrystals

被引:0
作者
Worasak Sukkabot
机构
[1] Ubon Ratchathani University,Department of Physics, Faculty of Science
来源
Journal of Computational Electronics | 2016年 / 15卷
关键词
Tight-binding theory; CdSe/AlP; Electron–hole exchange interaction; Stokes shift; Fine structure splitting;
D O I
暂无
中图分类号
学科分类号
摘要
Using the atomistic tight-binding theory in conjunction with a configuration interaction description, I investigate the new class of CdSe/AlP II–VI core/III–V shell nanocrystals. In an effort to theoretically analyze the atomistic behaviors, I calculate single-particle spectra, atomistic character, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state Coulomb energies, ground-state exchange energies, Stokes shift and fine structure splitting under different numbers of the growth shell monolayers (MLs). I highlight that CdSe/AlP II–VI core/III–V shell nanocrystals have strong thickness dependence on the structural and optical properties. The reduction of the optical band gaps is recognized with the increasing coated shell thickness because of quantum confinement. The improvement of wave function overlaps, oscillation strengths, Stokes shift, and fine structure splitting is demonstrated at the growth shell thickness of 1.0 ML. This atomistic prediction will contribute to the understanding of natural properties in the new class of colloidal CdSe/AlP II–VI core/III–V shell nanocrystals and will deliver some significant guidelines for further experimental investigations.
引用
收藏
页码:1248 / 1254
页数:6
相关论文
共 132 条
[1]  
Klimov VI(2000)Optical gain and stimulated emission in nanocrystal quantum dots Science 290 314-317
[2]  
Mikhailovsky AA(2008)Light-emitting diodes with semiconductor nanocrystals Angew. Chem. Int. Ed. 47 6538-6549
[3]  
Xu S(2001)Electrochromic nanocrystal quantum dots Science 291 2390-2392
[4]  
Malko A(2006)Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion Nano Lett. 6 1396-1400
[5]  
Hollingsworth JA(2003)Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots Appl. Phys. Lett. 82 4776-4778
[6]  
Leatherdale CA(2003)Nanoscale science and technology: building a big future from small things MRS Bull. 28 489-491
[7]  
Eisler HJ(2009)Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly Nanotechnology 19 055204-055208
[8]  
Bawendi MG(2002)-vinylcarbazole polymer layer Physica E 14 115-120
[9]  
Rogach AL(2005)Quantum dot solar cells Science 310 462-465
[10]  
Gaponik N(2006)Air-stable all-inorganic nanocrystal solar cells processed from solution J. Appl. Phys. 100 074510-074518