Uniform far field asymptotics of internal gravity waves from a source moving in a stratified fluid layer with smoothly varying bottom

被引:1
作者
Bulatov V.V. [1 ]
Vladimirov Y.V. [1 ]
机构
基金
俄罗斯基础研究基金会;
关键词
Wave Front; Internal Wave; Wave Field; Constant Depth; Internal Gravity Wave;
D O I
10.1007/BF02698190
中图分类号
学科分类号
摘要
The far field asymptotics of internal waves is constructed for the case when a point source of mass moves in a layer of arbitrarily stratified fluid with slowly varying bottom. The solutions obtained describe the far field both near the wave fronts of each individual mode and away from the wave fronts and are expansions in Airy or Fresnel waves with the argument determined from the solution of the corresponding eikonal equation. The amplitude of the wave field is determined from the energy conservation law along the ray tube. For model distributions of the bottom shape and the stratification describing the typical pattern of the ocean shelf exact analytic expressions are obtained for the rays, and the properties of the phase structure of the wave field are analyzed.
引用
收藏
页码:388 / 395
页数:7
相关论文
共 15 条
  • [1] Mitropol'skii, Yu.Z., (1981) Dynamics of Internal Gravity Waves in the Ocean, , Leningrad, Gidrometeoizdat
  • [2] Mel'nikov, V.A., The effect of the bottom topography on internal waves (1982) Izv. Akad. Nauk SSSR, Fiz. Atm. i Okeana, 18 (7), pp. 775-778
  • [3] Bezhanov, K.A., Zaets, P.G., Onufrief, A.T., Ter-Krikorov, A.M., Spatial problem of the flow of an exponentially stratified fluid of finite depth past a bottom roughness (1990) Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, (3), pp. 101-111
  • [4] Bulatov, V.V., Steady flow of stratified fluid over an uneven bottom (1991) Prikl. Mat. i Tekh. Fiz., (5), pp. 34-39
  • [5] Borovikov, V.A., Bulatov, V.V., Vladimirov, Y.V., Internal gravity waves excited by a body moving in a stratified fluid (1995) Fluid Dynam. Res., 15 (5), pp. 325-336
  • [6] Navrotskii, V.V., Lazaryuk, A.Yu., Malyshev, A.A., Peculiarities of the structure of the hydro-physical parameters and internal waves near shelf boundaries (1989) Doklady Akad. Nauk SSSR, 309 (1), pp. 187-191
  • [7] Keller, J.B., Van Mow, C., Internal wave propagation in a inhomogeneous fluid of nonuniform depth (1969) J. Fluid Mech., 38 (2 PART), pp. 365-374
  • [8] Vladimirov, Yu.V., Internal wave field in the vicinity of the front excited by a source moving above a smoothly varying bottom (1989) Prikl. Mat. i Tekh. Fiz., (4), pp. 89-94
  • [9] Borovikov, V.A., Vladimirov, Yu.V., Kel'bert, M.Ya., Internal gravity wave field excited by localized sources (1984) Izv. Akad. Nauk SSSR, Fiz. Atm. i Okeana, 20 (6), pp. 526-532
  • [10] Borovikov, V.A., Vladimirov, Yu.V., Kel'bert, M.Ya., On the intermediate asymptotics of the far field of internal waves in a stratified fluid layer lying on an homogeneous layer (1988) Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, (3), pp. 158-162