On Symmetric Solutions for (p, q)-Laplacian Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with Critical Terms

被引:0
作者
Laura Baldelli
Ylenia Brizi
Roberta Filippucci
机构
[1] University of Perugia,Department of Mathematics
[2] University of Firenze,Department of Mathematics
关键词
Variational methods; (; , ; )- Laplacian; Multiplicity results; Concentration-compactness; Symmetric solutions; Primary: 35J62; Secondary: 35J70; 35B06;
D O I
10.1007/s12220-021-00846-3
中图分类号
学科分类号
摘要
We prove existence and multiplicity results in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document} for an elliptic problem of (p, q)-Laplacian type with a nonlinearity involving both a critical term and a subcritical term with a positive real parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. In particular, nonnegative nontrivial weights satisfying some symmetry conditions with respect to a certain group T are included in the nonlinearity. We prove first the existence of at least one solution with positive energy for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} sufficiently small using Mountain Pass Theorem, then we obtain the existence of infinitely many weak solutions with positive (finite) energy for every λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} positive applying Fountain Theorem. Our proofs use variational methods and concentration compactness principles.
引用
收藏
相关论文
共 82 条
[1]  
Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[2]  
Rabinowitz PH(2021)Multiplicity results for ( Calc. Var. PDE 60 30-1216
[3]  
Baldelli L(1993))-Laplacian equations with critical exponent in Nonlinear Anal. 20 1205-460
[4]  
Brizi Y(1993) and negative energy J. Funct. Anal. 117 447-833
[5]  
Filippucci R(1996)Infinitely many solutions of a symmetric Dirichlet problem Nonlinear Anal. 26 823-59
[6]  
Bartsch T(1995)Infinitely many nonradial solutions of a Euclidean scalar field equation Nonlinear Anal. 25 41-182
[7]  
Bartsch T(1993)Extrema problems with critical Sobolev exponents on unbounded domains Arch. Ration. Mech. Anal. 122 159-490
[8]  
Willem M(1983)On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent Proc. Am. Math. Soc. 88 486-477
[9]  
Ben-Naoum AK(1983)A variational approach to the equation Commun. Pure Appl. Math. 36 437-316
[10]  
Troestler C(2002) in Arch. Ration. Mech. Anal. 165 295-440