Linearization for finite plasticity under dislocation-density tensor regularization

被引:0
作者
Riccardo Scala
Ulisse Stefanelli
机构
[1] Università di Siena San Niccolò,Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
[2] University of Vienna,Faculty of Mathematics
[3] Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,undefined
来源
Continuum Mechanics and Thermodynamics | 2021年 / 33卷
关键词
Finite plasticity; Linearization; -convergence; Incremental problem;
D O I
暂无
中图分类号
学科分类号
摘要
Finite-plasticity theories often feature nonlocal energetic contributions in the plastic variables. By introducing a length-scale for plastic effects in the picture, these nonlocal terms open the way to existence results (Mainik and Mielke in J Nonlinear Sci 19(3):221–248, 2009). We focus here on a reference example in this direction, where a specific energetic contribution in terms of dislocation-density tensor is considered (Mielke and Müller in ZAMM Z Angew Math Mech 86:233–250, 2006). When external forces are small and dissipative terms are suitably rescaled, the finite-strain elastoplastic problem converges toward its linearized counterpart. We prove a Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence result making this asymptotics rigorous, both at the incremental level and at the level of quasistatic evolution.
引用
收藏
页码:179 / 208
页数:29
相关论文
共 64 条
[1]  
Agostiniani V(2012)Linear elasticity obtained from finite elasticity by Ann. I. H. Poincaré 29 715-735
[2]  
Dal Maso G(2011)-convergence under weak coerciveness conditions Contin. Mech. Thermodyn. 23 257-274
[3]  
De Simone A(2007)Gamma-convergence of energies for nematic elastomers in the small strain limit Netw. Heterog. Media 2 551-567
[4]  
Agostiniani V(2001)A derivation of linear elastic energies from pair-interaction atomistic systems J. Mech. Phys. Solids 49 1539-1568
[5]  
DeSimone A(2002)On the characterization of geometrically necessary dislocations in finite plasticity Set-Valued Anal. 10 165-183
[6]  
Braides A(2014)Linearized elasticity as ESAIM Control Optim. Calc. Var. 20 725-747
[7]  
Solci M(2014)-limit of finite elasticity Math. Models Methods Appl. Sci. 24 2085-2153
[8]  
Vitali E(1997)Linearized plastic plate models as Adv. Appl. Mech. 33 295-361
[9]  
Cermelli P(2001)-limits of 3D finite elastoplasticity J. Mech. Phys. Solids 49 2245-2271
[10]  
Gurtin M(2006)Quasistatic evolution models for thin plates arising as low energy J. Reine Angew. Math. 595 55-91