On a free boundary problem for polymeric fluids: global existence of weak solutions

被引:0
作者
Donatella Donatelli
Konstantina Trivisa
机构
[1] University of L’Aquila,Department of Engineering Computer Science and Mathematics
[2] University of Maryland,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2017年 / 24卷
关键词
Doi model; Suspensions of rod-like molecules; Fluid-particle interaction model; Compressible Navier–Stokes equations; Fokker–Planck-type equation; Free boundary problems; Primary 35Q30; 76N10; Secondary 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the stability and global existence of weak solutions to a free boundary problem governing the evolution of polymeric fluids. We construct weak solutions of the two-phase model by performing the asymptotic limit of a macroscopic model governing the suspensions of rod-like molecules (known as Doi-model) in compressible fluids as the adiabatic exponent γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} goes to ∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty .$$\end{document} The convergence of these solutions, up to a subsequence, to the free-boundary problem is established using techniques in the spirit of Lions and Masmoudi (Ann Inst Henri Poincaré 16:373–410, 1999).
引用
收藏
相关论文
共 13 条
[1]  
Bae H(2013)On the Doi model for the suspensions of rod-like molecules: global-in-time existence Commun. Math. Sci. 11 831-850
[2]  
Trivisa K(2012)On the Doi model for the suspensions of rod-like molecules in compressible fluids Math. Models Methods Appl. Sci. 22 1250027-811
[3]  
Bae H(2007)Regularity of coupled two-dimensional nonlinear Fokker–Planck and Navier–Stokes systems Commun. Math. Phys. 270 789-191
[4]  
Trivisa K(2008)Global well-posedness for a Smoluchowski equation coupled with Navier–Stokes equations in 2D Commun. Math. Phys. 278 179-98
[5]  
Constantin P(2001)On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable Comment. Math. Univ. Carol. 42 83-410
[6]  
Fefferman C(1999)On a free boundary barotropic model Ann. Inst. Henri Poincaré 16 373-undefined
[7]  
Titi ES(undefined)undefined undefined undefined undefined-undefined
[8]  
Zarnescu A(undefined)undefined undefined undefined undefined-undefined
[9]  
Constantin P(undefined)undefined undefined undefined undefined-undefined
[10]  
Masmoudi N(undefined)undefined undefined undefined undefined-undefined