共 51 条
- [1] Alcala-Fdez J., Fernandez A., Luengo J., Derrac J., Garcia S., Sanchez L., Herrera F., Software tool: data set repository, integration of algorithms and experimental analysis framework, J. Multiple-Valued Logic Soft. Comput., 17, 2-3, pp. 255-287, (2011)
- [2] Barandela R., Sanchez J.S., Garcia V., Rangel E., Strategies for learning in class imbalance problems, Pattern Recognit., 36, 3, pp. 849-851, (2003)
- [3] Batista G.E.A.P.A., Prati R.C., Monard M.C., A study of the behavior of several methods for balancing machine learning training data, SIGKDD Explor. Newsl., 6, 1, pp. 20-29, (2004)
- [4] Brown I., Mues C., An experimental comparison of classification algorithms for imbalanced credit scoring data sets, Expert Syst. Appl., 39, 3, pp. 3446-3453, (2012)
- [5] Bunkhumpornpat C., Sinapiromsaran K., Lursinsap C., Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for handling the class imbalanced problem, Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 475-482, (2009)
- [6] Chaudhuri B.B., A new definition of neighborhood of a point in multi-dimensional space, Pattern Recognit. Lett., 17, 1, pp. 11-17, (1996)
- [7] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, pp. 321-357, (2002)
- [8] Chawla N.V., Lazarevic A., Hall L.O., Bowyer K.W., SMOTEBoost: improving prediction of the minority class in boosting, Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 107-119, (2003)
- [9] Chen E., Lin Y., Xiong H., Luo Q., Ma H., Exploiting probabilistic topic models to improve text categorization under class imbalance, Inf. Process. Manage., 47, 2, pp. 202-214, (2011)
- [10] Cohen G., Hilario M., Sax H., Hugonnet S., Geissbuhler A., Learning from imbalanced data in surveillance of nosocomial infection, Artif. Intell. Med., 37, 1, pp. 7-18, (2006)