Deconvolution of a Cumulative Distribution Function with Some Non-standard Noise Densities

被引:0
作者
Dang Duc Trong
Cao Xuan Phuong
机构
[1] University of Science,Faculty of Mathematics and Computer Science
[2] Vietnam National University Ho Chi Minh City,Faculty of Mathematics and Statistics
[3] Ton Duc Thang University,undefined
来源
Vietnam Journal of Mathematics | 2019年 / 47卷
关键词
Deconvolution; Cumulative distribution function; Non-standard noise densities; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous random variable having an unknown cumulative distribution function F. We study the problem of estimating F based on i.i.d. observations of a continuous random variable Y from the model Y = X + Z. Here, Z is a random noise distributed with known density g and is independent of X. We focus on some cases of g in which its Fourier transform can vanish on a countable subset of ℝ. We propose an estimator F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} for F and then investigate upper bounds on convergence rate of F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} under the root mean squared error. Some numerical experiments are also provided.
引用
收藏
页码:327 / 353
页数:26
相关论文
共 35 条
[11]  
Meister A(1951) < Biometrika 38 481-482
[12]  
Dattner I(1959) ) with supersmooth error distributions Ann. Math. Stat. 30 198-205
[13]  
Goldenshluger A(2007)On the optimal rates of convergence for nonparametric deconvolution problems Ann. Stat. 35 1535-1558
[14]  
Juditsky A(2014)Note on the inversion theorem Electron. J. Stat. 8 2879-2904
[15]  
Dattner I(2007)A consistent estimator of a component of a convolution Math. Methods Stat. 16 63-76
[16]  
Reiser B(2008)A ridge-parameter approach to deconvolution Inverse Probl. 24 015003-330
[17]  
Dattner I(1997)Adaptive density estimation in deconvolution problems with unknown error distribution J. Nonparametr. Stat. 7 307-1541
[18]  
Fan J(2017)Deconvolving compactly supported densities Ann. Stat. 45 1516-4400
[19]  
Gil-Pelaez J(2014)Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions Commun. Stat. Theory Methods 43 4384-256
[20]  
Gaffey WR(2015)On the effect of estimating the error density in nonparametric deconvolution J. Math. 43 239-undefined