Deconvolution of a Cumulative Distribution Function with Some Non-standard Noise Densities

被引:0
作者
Dang Duc Trong
Cao Xuan Phuong
机构
[1] University of Science,Faculty of Mathematics and Computer Science
[2] Vietnam National University Ho Chi Minh City,Faculty of Mathematics and Statistics
[3] Ton Duc Thang University,undefined
来源
Vietnam Journal of Mathematics | 2019年 / 47卷
关键词
Deconvolution; Cumulative distribution function; Non-standard noise densities; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous random variable having an unknown cumulative distribution function F. We study the problem of estimating F based on i.i.d. observations of a continuous random variable Y from the model Y = X + Z. Here, Z is a random noise distributed with known density g and is independent of X. We focus on some cases of g in which its Fourier transform can vanish on a countable subset of ℝ. We propose an estimator F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} for F and then investigate upper bounds on convergence rate of F̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat F$\end{document} under the root mean squared error. Some numerical experiments are also provided.
引用
收藏
页码:327 / 353
页数:26
相关论文
共 35 条
  • [1] Butucea C(2009)Adaptive estimation of linear functionals in the convolution model and applications Bernoulli 15 69-98
  • [2] Comte F(1997)Deconvolution of a distribution function J. Am. Stat. Assoc. 92 1459-1465
  • [3] Cordy CB(2011)Data-driven density estimation in the presence of additive noise with unknown distribution J. R. Stat. Soc. Ser. B 73 601-627
  • [4] Thomas DR(1989)Consistent deconvolution in density estimation Can. J. Stat. 17 235-239
  • [5] Comte F(1993)A Fourier approach to nonparametric deconvolution of a density estimate J. R. Stat. Soc. Ser. B 55 523-531
  • [6] Lacour C(2011)Nonparametric function estimation under Fourier-oscillating noise Stat. Sin. 21 1065-1092
  • [7] Devroye L(2011)On deconvolution of distribution functions Ann. Stat. 39 2477-2501
  • [8] Diggle PJ(2013)Estimation of distribution functions in measurement error models J. Stat. Plan. Inference 143 479-493
  • [9] Hall P(2013)Deconvolution of Stat. Probab. Lett. 83 1880-1887
  • [10] Delaigle A(1991)( Ann. Stat. 19 1257-1272