Rigidity of four-dimensional compact manifolds with harmonic Weyl tensor

被引:0
作者
Ernani Ribeiro
机构
[1] Universidade Federal do Ceará - UFC,Departamento de Matemática, Campus do Pici
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2016年 / 195卷
关键词
Einstein manifolds; Biorthogonal curvature; 4-Manifolds; Primary 53C21; 53C20; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a 4-dimensional compact manifold M4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^4$$\end{document} with harmonic Weyl tensor must be either locally conformally flat or isometric to a complex projective space CP2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}^2,$$\end{document} provided that the biorthogonal (sectional) curvature satisfies a suitable pinching condition. In particular, we improve the pinching constants considered by some preceding works on a rigidity result for 4-dimensional compact manifolds.
引用
收藏
页码:2171 / 2181
页数:10
相关论文
共 35 条
  • [21] Hitchin J(2009)Positively curved 4-manifolds and the nonnegatively of isotropic curvatures Commun. Anal. Geom. 4 621-635
  • [22] LeBrun C(1967)Orthogonally pinched curvature tensors and applications Tohoku Math. J. 19 227-231
  • [23] LeBrun C(1974)Manifolds with nonnegative isotropic curvature Proc. Jpn. Acad. 50 301-302
  • [24] Nayatani S(1969)On conformally flat Riemannian spaces with positive Ricci curvature J. Math. Mech. 18 779-786
  • [25] Nitta T(2000)A theorem on Riemannian manifolds with positive curvature operator Invent. Math. 142 435-450
  • [26] Micallef M(undefined)Some remarks on the Gauss–Bonnet formula undefined undefined undefined-undefined
  • [27] Wang M(undefined)Rigidity of Einstein 4-manifolds with positive curvature undefined undefined undefined-undefined
  • [28] Noronha M(undefined)undefined undefined undefined undefined-undefined
  • [29] Noronha M(undefined)undefined undefined undefined undefined-undefined
  • [30] Seaman W(undefined)undefined undefined undefined undefined-undefined