Rigidity of four-dimensional compact manifolds with harmonic Weyl tensor

被引:0
作者
Ernani Ribeiro
机构
[1] Universidade Federal do Ceará - UFC,Departamento de Matemática, Campus do Pici
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2016年 / 195卷
关键词
Einstein manifolds; Biorthogonal curvature; 4-Manifolds; Primary 53C21; 53C20; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a 4-dimensional compact manifold M4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^4$$\end{document} with harmonic Weyl tensor must be either locally conformally flat or isometric to a complex projective space CP2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}^2,$$\end{document} provided that the biorthogonal (sectional) curvature satisfies a suitable pinching condition. In particular, we improve the pinching constants considered by some preceding works on a rigidity result for 4-dimensional compact manifolds.
引用
收藏
页码:2171 / 2181
页数:10
相关论文
共 35 条
  • [1] Berger M(1961)Sur les variétés d’Einstein compactes Ann. Mat. Pura Appl. 53 89-95
  • [2] Bettiol R(2014)Positive biorthogonal curvature on Proc. Am. Math. Soc. 142 4341-4353
  • [3] Brendle S(2010). Duke Math. J. 151 1-21
  • [4] Chen B(2012)Einstein manifolds with nonnegative isotropic curvature are locally symmetric J. Diff. Geom. 91 41-80
  • [5] Tang S(2004)Complete classification of compact four-manifolds with positive isotropic curvature J. Geom. Phys. 51 244-255
  • [6] Zhu X(2014)On Einstein four-manifolds Mich. Math. J. 63 747-761
  • [7] Costa E(1955)Four-dimensional compact manifolds with nonnegative biorthogonal curvature Abh. Math. Semin. Univ. Hamb. 20 117-126
  • [8] Costa E(1989)On curvature and characteristic classes of a Riemannian manifold Forum Math. 1 377-394
  • [9] Ribeiro E(1980)Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor Astérique 80 33-52
  • [10] Chern S-S(2012)Variétés dont le spectre ressemble à celui d’une sphère J. Diff. Geom. 92 507-545