Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach

被引:0
作者
Caibin Zeng
Qigui Yang
Yang Quan Chen
机构
[1] South China University of Technology,School of Sciences
[2] Utah State University,Center for Self
来源
Nonlinear Dynamics | 2012年 / 67卷
关键词
Stochastic differential equation; Fractional Brownian motion; Reducibility; Itô formula;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents some sufficient and necessary conditions for reducing the nonlinear stochastic differential equations (SDEs) with fractional Brownian motion (fBm) to the linear SDEs. The explicit solution of the reduced equation is computed by its integral equation or the variation of parameters technique. Two illustrative examples are provided to demonstrate the applicability of the proposed approach.
引用
收藏
页码:2719 / 2726
页数:7
相关论文
共 41 条
  • [1] Kolmogorov A.N.(1940)The Wiener spiral and some other interesting curves in Hilbert space Dokl. Akad. Nauk SSSR 26 115-118
  • [2] Hurst H.E.(1951)Long-term storage capacity in reservoirs Trans. Am. Soc. Civ. Eng. 116 400-410
  • [3] Hurst H.E.(1956)Methods of using long-term storage in reservoirs ICE Proc. 5 519-543
  • [4] Mandelbrot B.B.(1968)Fractional Brownian motions, fractional noises and applications SIAM Rev. 10 422-437
  • [5] Van Ness J.W.(1998)Fractional Brownian motion: theory and applications ESAIM Proc. 5 75-86
  • [6] Decreusefond L.(1997)Arbitrage with fractional Brownian motion Math. Finance 7 95-105
  • [7] Üstünel A.S.(1995)Stochastic analysis of fractional Brownian motions Stoch. Stoch. Rep. 55 121-140
  • [8] Rogers L.C.G.(1999)Stochastic analysis of the fractional Brownian motion Potential Anal. 10 177-214
  • [9] Lin S.J.(2000)Stochastic calculus for fractional Brownian motion. I. Theory SIAM J. Control Optim. 38 582-612
  • [10] Decreusefond L.(2000)Stochastic calculus with respect to Gaussian processes Ann. Probab. 29 766-801