Detecting machine chatter using audio data and machine learning

被引:0
|
作者
Ilarion Kvinevskiy
Sanjeev Bedi
Stephen Mann
机构
[1] University of Waterloo,Department of Mechanical and Mechatronics Engineering
[2] University of Waterloo,Cheriton School of Computer Science
来源
The International Journal of Advanced Manufacturing Technology | 2020年 / 108卷
关键词
CNC machining; Chatter; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for detecting chatter in CNC machining. Our method uses machining learning to train a classifier to determine the chatter threshold, and we use an autoencoder to reduce the dimensionality of the data. We test our method on machining audio data, and successfully detect chatter in the validation data. Our method is amenable to use on the shop floor, as a machinist using our method needs only to classify audio as chatter and non-chatter.
引用
收藏
页码:3707 / 3716
页数:9
相关论文
共 50 条
  • [41] Machine Learning Using a Simple Feature for Detecting Multiple Types of Events From PMU Data
    Dokic, Tatjana
    Baembitov, Rashid
    Hai, Ameen Abdel
    Cheng, Zheyuan
    Hu, Yi
    Kezunovic, Mladen
    Obradovic, Zoran
    2022 INTERNATIONAL CONFERENCE ON SMART GRID SYNCHRONIZED MEASUREMENTS AND ANALYTICS - SGSMA 2022, 2022,
  • [42] Detecting drug diversion in health-system data using machine learning and advanced analytics
    Knight, Tom
    May, Bernie
    Tyson, Don
    McAuley, Scott
    Letzkus, Pam
    Enright, Sharon Murphy
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2022, 79 (16) : 1345 - 1354
  • [43] Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms
    Cai, Siqi
    Li, Guofeng
    Zhang, Xiaoya
    Huang, Shuangyuan
    Zheng, Haiqing
    Ma, Ke
    Xie, Longhan
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2019, 16 (01)
  • [44] Machine Learning for Detecting Blood Transfusion Needs Using Biosignals
    Ko H.
    Park C.
    Kang W.S.
    Nam Y.
    Yoon D.
    Lee J.
    Computer Systems Science and Engineering, 2023, 46 (02): : 2369 - 2381
  • [45] Detecting and Preventing ROP Attacks using Machine Learning on ARM
    Welearegai, Gebrehiwet B.
    Hu, Chenpo
    Hammer, Christian
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 667 - 677
  • [46] Detecting BGP Routing Anomalies Using Machine Learning: A Review
    Muosa, Ali Hassan
    Ali, A. H.
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 145 - 164
  • [47] Detecting Architectural Integrity Violation Patterns Using Machine Learning
    Zakurdaeva, Alla
    Weiss, Michael
    Muegge, Steven
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1480 - 1487
  • [48] Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
    Agrawal, Ayush
    Petersen, Mark R.
    TOXICS, 2021, 9 (12)
  • [49] Detecting Object Open Angle and Direction Using Machine Learning
    Zhang, Yiwen
    Ren, Yongxiong
    Xie, Guodong
    Wang, Zhi
    Zhang, Hao
    Xu, Tianxu
    Xu, Haoyuan
    Huang, Hao
    Bao, Changjing
    Pan, Zhongqi
    Yue, Yang
    IEEE ACCESS, 2020, 8 : 12300 - 12306
  • [50] Detecting Heart Anomalies Using Mobile Phones and Machine Learning
    Talab, Elhoussine
    Mohamed, Omar
    Begum, Labeeba
    Aloul, Fadi
    Sagahyroon, Assim
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 428 - 432