Regular Ordinary Differential Operators with Involution
被引:0
|
作者:
V. E. Vladykina
论文数: 0引用数: 0
h-index: 0
机构:Lomonosov Moscow State University,
V. E. Vladykina
A. A. Shkalikov
论文数: 0引用数: 0
h-index: 0
机构:Lomonosov Moscow State University,
A. A. Shkalikov
机构:
[1] Lomonosov Moscow State University,
来源:
Mathematical Notes
|
2019年
/
106卷
关键词:
operators with involution;
regular differential operators;
basis property of eigenfunctions of operators;
Riesz bases;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The main results of the paper are related to the study of differential operators of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ly = {y^{\left( n \right)}}\left( { - x} \right) + \sum\limits_{k = 1}^n {pk\left( x \right){y^{\left( {n - k} \right)}}\left( { - x} \right) + } \sum\limits_{k = 1}^n {{q_k}\left( x \right){y^{\left( {n - k} \right)}}} \left( x \right),\,x \in \left[ { - 1,1} \right],$$\end{document} with boundary conditions of general form concentrated at the endpoints of a closed interval. Two equivalent definitions of the regularity of boundary conditions for the operator L are given, and a theorem on the unconditional basis property with brackets of the generalized eigenfunctions of the operator L in the case of regular boundary conditions is proved.
机构:
Lomonosov Moscow State Univ, Fac Mech & Math, Chair Funct Theory & Funct Anal, Moscow, RussiaLomonosov Moscow State Univ, Fac Mech & Math, Chair Funct Theory & Funct Anal, Moscow, Russia
Granilshchikova, Ya A.
Shkalikov, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ, Fac Mech & Math, Chair Funct Theory & Funct Anal, Moscow, RussiaLomonosov Moscow State Univ, Fac Mech & Math, Chair Funct Theory & Funct Anal, Moscow, Russia