The Rigidity of Infinite Graphs II

被引:0
作者
D. Kitson
S. C. Power
机构
[1] Mary Immaculate College,Department of Mathematics and Computer Studies
[2] Lancaster University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Infinite graphs; Infinitesimal rigidity; Cauchy’s rigidity theorem; Graph rigidity; 52C25; 05C63;
D O I
暂无
中图分类号
学科分类号
摘要
Inductive constructions are established for countably infinite simple graphs which have minimally rigid locally generic placements in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{R}}}^2$$\end{document}. This generalises a well-known result of Henneberg for generically rigid finite graphs. Inductive methods are also employed in the determination of the infinitesimal flexibility dimension of countably infinite graphs associated with infinitely faceted convex polytopes in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{R}}}^3$$\end{document}. In particular, a generalisation of Cauchy’s rigidity theorem is obtained.
引用
收藏
相关论文
共 31 条
[1]  
Cruickshank J(2017)The generic rigidity of triangulated spheres with blocks and holes J. Comb. Theory Ser. B 122 550-577
[2]  
Kitson D(2019)The rigidity of a partially triangulated torus Proc. Lond. Math. Soc. (3) 118 1277-1304
[3]  
Power SC(2021)Which graphs are rigid in J. Glob. Optim. 27 991-1020
[4]  
Cruickshank J(2012)? SIAM J. Discret. Math. 74 2185-2247
[5]  
Kitson D(2021)Isostatic block and hole frameworks Commun. Pure Appl. Math. 136 249-288
[6]  
Power SC(2019)The almost-rigidity of frameworks J. Comb. Theory Ser. B 46 685-697
[7]  
Dewar S(2014)Global rigidity of triangulations with braces Bull. Lond. Math. Soc. 60 531-557
[8]  
Kitson D(2018)Infinitesimal rigidity for non-Euclidean bar-joint frameworks Discret. Comput. Geom. 4 331-340
[9]  
Nixon A(1970)The rigidity of infinite graphs J. Eng. Math. 9 1-16
[10]  
Finbow-Singh W(2014)On graphs and the rigidity of plane skeletal structures Contrib. Discret. Math. 26 1733-1757