Essential spectrum of the weighted Laplacian on noncompact manifolds and applications

被引:0
作者
Adina Rocha
机构
[1] Universidade Federal de Alagoas,Instituto de Matemática
来源
Geometriae Dedicata | 2017年 / 186卷
关键词
Essential spectrum; Weighted Laplacian; Volume growth; Estimate; Mean curvature; Index; 53C21; 53C42; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain upper estimates for the bottom (that is, greatest lower bound) of the essential spectrum of weighted Laplacian operator of a noncompact weighted manifold under assumptions of the volume growth of their geodesic balls and spheres. Furthermore, we find examples where the equality occurs in the estimates obtained. As a consequence, we give estimates for the weighted mean curvature of complete noncompact hypersurfaces into weighted manifolds.
引用
收藏
页码:197 / 219
页数:22
相关论文
共 43 条
[1]  
Alencar H(1993)Hypersurfaces of constant mean curvature with finite index and volume of polynomial growth Arch. Math. (Basel) 60 489-493
[2]  
do Carmo M(1984)Stability of hypersurfaces with constant mean curvature Math. Z. 185 339-353
[3]  
Barbosa JL(1988)Stability of hypersurfaces of constant mean curvature in Riemannian manifolds Math. Z. 197 123-138
[4]  
do Carmo M(2013)Spectral and stochastic properties of the Rev. Mat. Iberoam. 29 579-610
[5]  
Barbosa JL(2009)-Laplacian, solutions of PDEs at infinity and geometric applications J. Funct. Anal. 256 1769-1820
[6]  
do Carmo M(1981)Spectral radius, index estimates for Schrödinger operators and geometric applications Math. Z. 178 501-508
[7]  
Eschenburg J(1984)A relation between growth and the spectrum of the Laplacian Math. Z. 187 425-432
[8]  
Bessa GP(1999)On the spectrum of noncompact manifolds with finite volume Trans. Am. Math. Soc. 351 1391-1401
[9]  
Pigola S(1975)Eigenvalue estimate on complete noncompact Riemannian manifolds and applications Math. Z. 143 289-297
[10]  
Setti A(2015)Eigenvalue comparison theorems and its geometric applications Trans. Am. Math. Soc. 367 4041-4059