Kumaraswamy distribution: different methods of estimation

被引:0
作者
Sanku Dey
Josmar Mazucheli
Saralees Nadarajah
机构
[1] St. Anthony’s College,
[2] Universidade Estadual de Maringá,undefined
[3] University of Manchester,undefined
来源
Computational and Applied Mathematics | 2018年 / 37卷
关键词
Kumaraswamy distribution; Least squares estimators; Maximum likelihood estimators; Method of maximum product spacing; Method of moments estimators; Percentile estimators; Weighted least squares estimators; 62E99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses different methods of estimation of the unknown parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. We briefly describe ten different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moments estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, Cramér–von-Mises estimators, Anderson–Darling estimators and right tailed Anderson–Darling estimators. Monte Carlo simulations and two real data applications are performed to compare the performances of the estimators for both small and large samples.
引用
收藏
页码:2094 / 2111
页数:17
相关论文
共 119 条
[1]  
Ahmed MA(2015)The new Kumaraswamy Kumaraswamy family of generalized distributions with application Pak J Stat Oper Res 11 159-180
[2]  
Mahmoud MR(2014)The Kumaraswamy-geometric distribution J Stat Distrib Appl 6 262-279
[3]  
ElSherbini EA(2009)Estimation of the generalized logistic distribution parameters: comparative study Stat Methodol 23 193-212
[4]  
Akinsete A(1952)Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes Ann Math Stat 49 765-769
[5]  
Famoye F(1954)A test of goodness-of-fit J Am Stat Assoc 37 211-230
[6]  
Lee C(2013)Double bounded Kumaraswamy-power series class of distributions SORT 12 129-144
[7]  
Alkasasbeh MR(2013)The Kumaraswamy Pareto distribution J Stat Theory Appl 3 394-403
[8]  
Raqab MZ(1983)Estimating parameters in continuous univariate distributions with a shifted origin J R Stat Soc B 347 1399-1429
[9]  
Anderson TW(2010)The Kumaraswamy Weibull distribution with application to failure data J Frankl Inst 21 139-168
[10]  
Darling DA(2012)The Kumaraswamy Gumbel distribution Stat Methods Appl 10 195-224