A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain

被引:0
作者
Jishan Fan
Xuanji Jia
Yong Zhou
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] Sun Yat-sen University,School of Mathematics (Zhuhai)
[3] Zhejiang Normal University,Department of Mathematics
来源
Applications of Mathematics | 2019年 / 64卷
关键词
regularity criterion; Navier-Stokes system; bounded domain; 35Q30; 35Q35; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
引用
收藏
页码:397 / 407
页数:10
相关论文
共 27 条
[11]  
Georgescu V(2006)Strong solutions of the compressible nematic liquid crystal flow SIAM J. Math. Anal 37 1417-1434
[12]  
Giga Y(1934)A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations Acta Math 37 193-248
[13]  
He F(2018)Sur le mouvement d’un liquide visqueux emplissant l’espace Nonlinear Anal, Theory Methods Appl, Ser. A, Theory Method 37 48-55
[14]  
Ma C(2018)An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations Commun. Math. Phys 37 951-973
[15]  
Wang Y(1959)Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser 37 115-162
[16]  
Hopf E(1992)On elliptic partial differential equations Methods Appl. Sci 37 123-143
[17]  
Huang T(undefined)Estimating ∇u by div undefined undefined undefined-undefined
[18]  
Wang C(undefined) and curl undefined undefined undefined-undefined
[19]  
Wen H(undefined) Math undefined undefined undefined-undefined
[20]  
Kim H(undefined)undefined undefined undefined undefined-undefined