A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain

被引:0
作者
Jishan Fan
Xuanji Jia
Yong Zhou
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] Sun Yat-sen University,School of Mathematics (Zhuhai)
[3] Zhejiang Normal University,Department of Mathematics
来源
Applications of Mathematics | 2019年 / 64卷
关键词
regularity criterion; Navier-Stokes system; bounded domain; 35Q30; 35Q35; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
引用
收藏
页码:397 / 407
页数:10
相关论文
共 27 条
  • [1] Azzam J(2015)Bounded mean oscillation and the uniqueness of active scalar equations Trans. Am. Math. Soc 567 3095-3118
  • [2] Bedrossian J(2009)Navier-Stokes equations: Green’s matrices, vorticity direction, and regularity up to the boundary J. Differ. Equation 37 597-628
  • [3] Beirao da Veiga H(2010)Sharp inviscid limit results under Navier type boundary conditions An V theory. J. Math. Fluid Mech 37 397-411
  • [4] Berselli L C(1985)variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three-dimensional domains J. Math. Anal. Appl 107 537-560
  • [5] Beirao da Veiga H(2002)On a regularity criterion for the solutions to the 3D Navier-Stokes equations Differ. Integral Equ 37 1129-1137
  • [6] Crispo F(1979)Some boundary value problems for differential forms on compact Riemannian manifolds Ann. Mat. Pura Appl 122 159-198
  • [7] Bendali A(1986)Solutions for semilinear parabolic equations in J. Differ. Equation 37 186-212
  • [8] Dominguez J M(2016) and regularity of weak solutions of the Navier-Stokes system Appl. Math. Comput 37 148-151
  • [9] Gallic: A S(1951)On regularity for the Boussinesq system in a bounded domain Math. Nachr 37 213-231
  • [10] Berselli L C(2012)Über die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen J. Differ. Equation 37 2222-2265