A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network

被引:0
|
作者
Linmin Pei
Murat Ak
Nourel Hoda M. Tahon
Serafettin Zenkin
Safa Alkarawi
Abdallah Kamal
Mahir Yilmaz
Lingling Chen
Mehmet Er
Nursima Ak
Rivka Colen
机构
[1] Frederick National Laboratory for Cancer Research,Imaging and Visualization Group, ABCS
[2] University of Pittsburgh,Department of Radiology
[3] University of Pittsburgh Medical Center,Hillman Cancer Center
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Accurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue identification, which could result in serious misjudgments, specifically for patients with brain tumors. Though there are several existing works on skull stripping in literature, most of them either focus on healthy brain MRIs or only apply for a single image modality. These methods may be not optimal for multiparametric MRI scans. In the paper, we propose an ensemble neural network (EnNet), a 3D convolutional neural network (3DCNN) based method, for brain extraction on multiparametric MRI scans (mpMRIs). We comprehensively investigate the skull stripping performance by using the proposed method on a total of 15 image modality combinations. The comparison shows that utilizing all modalities provides the best performance on skull stripping. We have collected a retrospective dataset of 815 cases with/without glioblastoma multiforme (GBM) at the University of Pittsburgh Medical Center (UPMC) and The Cancer Imaging Archive (TCIA). The ground truths of the skull stripping are verified by at least one qualified radiologist. The quantitative evaluation gives an average dice score coefficient and Hausdorff distance at the 95th percentile, respectively. We also compare the performance to the state-of-the-art methods/tools. The proposed method offers the best performance.
引用
收藏
相关论文
共 50 条
  • [1] A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network
    Pei, Linmin
    Murat, A. K.
    Tahon, Nourel Hoda M.
    Zenkin, Serafettin
    Alkarawi, Safa
    Kamal, Abdallah
    Yilmaz, Mahir
    Chen, Lingling
    Er, Mehmet
    Nursima, A. K.
    Colen, Rivka
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Author Correction: A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network
    Linmin Pei
    Murat Ak
    Nourel Hoda M. Tahon
    Serafettin Zenkin
    Safa Alkarawi
    Abdallah Kamal
    Mahir Yilmaz
    Lingling Chen
    Mehmet Er
    Nursima Ak
    Rivka Colen
    Scientific Reports, 12
  • [3] A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network (June, 10.1038/s41598-022-14983-4, 2022)
    Pei, Linmin
    Ak, Murat
    Tahon, Nourel Hoda M.
    Zenkin, Serafettin
    Alkarawi, Safa
    Kamal, Abdallah
    Yilmaz, Mahir
    Chen, Lingling
    Er, Mehmet
    Ak, Nursima
    Colen, Rivka
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
    Kleesiek, Jens
    Urban, Gregor
    Hubert, Alexander
    Schwarz, Daniel
    Maier-Hein, Klaus
    Bendszus, Martin
    Biller, Armin
    NEUROIMAGE, 2016, 129 : 460 - 469
  • [5] Brain Tumor Classification Using 3D Convolutional Neural Network
    Pei, Linmin
    Vidyaratne, Lasitha
    Hsu, Wei-Wen
    Rahman, Md Monibor
    Iftekharuddin, Khan M.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 335 - 342
  • [6] Brain Tumor Segmentation Using 3D Convolutional Neural Network
    Liang, Kaisheng
    Lu, Wenlian
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 199 - 207
  • [7] Brain Age Estimation using Brain MRI and 3D Convolutional Neural Network
    Pardakhti, Nastsrsn
    Sajedi, Hedieh
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 386 - 390
  • [8] Detection of multiple sclerosis in brain MRIs using 3D convolutional networks.
    Eitel, F.
    Soehler, E.
    Bellmann-Strobl, J.
    Brandt, A. U.
    Ruprecht, K.
    Giess, R.
    Kuchling, J.
    Weygandt, M.
    Haynes, J. -D.
    Scheel, M.
    Paul, F.
    Ritter, K.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 90 - 91
  • [9] Brain age estimation based on 3D MRI images using 3D convolutional neural network
    Pardakhti, Nastaran
    Sajedi, Hedieh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 25051 - 25065
  • [10] Brain age estimation based on 3D MRI images using 3D convolutional neural network
    Nastaran Pardakhti
    Hedieh Sajedi
    Multimedia Tools and Applications, 2020, 79 : 25051 - 25065