Equilibrium Spacetime Correlations of the Toda Lattice on the Hydrodynamic Scale

被引:0
作者
Guido Mazzuca
Tamara Grava
Thomas Kriecherbauer
Kenneth T.-R. McLaughlin
Christian B. Mendl
Herbert Spohn
机构
[1] The Royal Institute of Technology,Mathematics
[2] University of Bristol,School of Mathematics
[3] SISSA,Mathematics Area
[4] INFN sezione di Trieste,Mathematics
[5] Universität Bayreuth,Mathematics
[6] Tulane University,Informatics
[7] Technische Universität München,Mathematics and Physics
[8] Technische Universität München,undefined
来源
Journal of Statistical Physics | / 190卷
关键词
Toda lattice; Integrable systems; Generalized hydrodynamics; Correlation functions;
D O I
暂无
中图分类号
学科分类号
摘要
We report on molecular dynamics simulations of spacetime correlations of the Toda lattice in thermal equilibrium. The correlations of stretch, momentum, and energy are computed numerically over a wide range of pressure and temperature. Our numerical results are compared with the predictions from linearized generalized hydrodynamics on the Euler scale. The system size is N=3000,4000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3000,4000$$\end{document} and time t=600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t =600$$\end{document}, at which ballistic scaling is well confirmed. With no adjustable parameters, the numerically obtained scaling functions agree with the theory within a precision of less than 3.5%.
引用
收藏
相关论文
共 121 条
  • [1] Allez R(2012)Invariant Phys. Rev. Lett. 109 1-5
  • [2] Bouchaud J(2018) ensembles and the Gauss-Wigner crossover SciPost Phys. 108 33LT01-356
  • [3] Guionnet A(2012)Generalized hydrodynamics of classical integrable field theory: the Sinh-Gordon model Phys. Rev. Lett. 117 293-1925
  • [4] Bastianello A(2016)Exact results for anomalous transport in one-dimensional Hamiltonian systems Phys. Rev. Lett. 119 039-154
  • [5] Doyon B(2017)Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents Phys. Rev. Lett. 52 1924-1729
  • [6] Watts G(2019)Solvable hydrodynamics of quantum integrable systems J. Phys. A: Math. Theor. 6 147-851
  • [7] Yoshimura T(2016)Kinetic theory of quantum and classical Toda lattices Phys. Rev. X 60 1689-31
  • [8] Beijeren H(2019)Emergent hydrodynamics in integrable quantum systems out of equilibrium Phys. Rev. E 391 811-29
  • [9] Bertini B(2018)Kardar-Parisi-Zhang scaling for an integrable lattice Landau–Lifshitz spin chain SciPost Phys. 3 1-362
  • [10] Collura M(2019)Exact large-scale correlations in integrable systems out of equilibrium J. Math. Phys. 101 1-95