Fino-Vezzoni conjecture on Lie algebras with abelian ideals of codimension two

被引:2
作者
Cao, Kexiang [1 ]
Zheng, Fangyang [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
关键词
Hermitian manifolds; Balanced metrics; Pluriclosed metrics; Fino-Vezzoni Conjecture; BALANCED METRICS; KAHLER; MANIFOLDS; EXISTENCE; TORSION;
D O I
10.1007/s00209-024-03506-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we confirm the Fino-Vezzoni Conjecture for unimodular Lie algebras which contain abelian ideals of codimension two, a natural generalization to the class of almost abelian Lie algebras. This provides new evidence towards the validity of the conjecture on a very special type of 3-step solvmanifolds.
引用
收藏
页数:23
相关论文
共 46 条
  • [1] Vanishing theorems on Hermitian manifolds
    Alexandrov, B
    Ivanov, S
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) : 251 - 265
  • [2] On Gauduchon connections with Kahler-like curvature
    Angella, Daniele
    Otal, Antonio
    Ugarte, Luis
    Villacampa, Raquel
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (05) : 961 - 1006
  • [3] Angella D, 2013, INVENT MATH, V192, P71, DOI 10.1007/s00222-012-0406-3
  • [4] SKT structures on nilmanifolds
    Arroyo, Romina M.
    Nicolini, Marina
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) : 1307 - 1320
  • [5] The long-time behavior of the homogeneous pluriclosed flow
    Arroyo, Romina M.
    Lafuente, Ramiro A.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (01) : 266 - 289
  • [6] Bock C, 2016, ASIAN J MATH, V20, P199
  • [7] OBSTRUCTIONS TO THE EXISTENCE OF KAHLER STRUCTURES ON COMPACT COMPLEX MANIFOLDS
    Chiose, Ionut
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3561 - 3568
  • [8] Console S., 2016, Rend. Semin. Mat. (Torino), V74, P95
  • [9] Enrietti N, 2012, J SYMPLECT GEOM, V10, P203