Braided L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L_{\infty }}$$\end{document}-algebras, braided field theory and noncommutative gravity

被引:0
作者
Marija Dimitrijević Ćirić
Grigorios Giotopoulos
Voja Radovanović
Richard J. Szabo
机构
[1] University of Belgrade,Faculty of Physics
[2] Heriot-Watt University,Department of Mathematics
[3] Maxwell Institute for Mathematical Sciences,undefined
[4] Higgs Centre for Theoretical Physics,undefined
关键词
-algebra; Drinfeld twist; Noncommutative gravity; 18Nxx; 46L87; 83C65;
D O I
10.1007/s11005-021-01487-x
中图分类号
学科分类号
摘要
We define a new homotopy algebraic structure, that we call a braided L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-algebra, and use it to systematically construct a new class of noncommutative field theories, that we call braided field theories. Braided field theories have gauge symmetries which realize a braided Lie algebra, whose Noether identities are inhomogeneous extensions of the classical identities, and which do not act on the solutions of the field equations. We use Drinfel’d twist deformation quantization techniques to generate new noncommutative deformations of classical field theories with braided gauge symmetries, which we compare to the more conventional theories with star-gauge symmetries. We apply our formalism to introduce a braided version of general relativity without matter fields in the Einstein–Cartan–Palatini formalism. In the limit of vanishing deformation parameter, the braided theory of noncommutative gravity reduces to classical gravity without any extensions.
引用
收藏
相关论文
共 117 条
[1]  
Asakawa T(2008)Hopf algebra symmetry and string Prog. Theor. Phys. 120 659-689
[2]  
Mori M(2009)Twist quantization of string and JHEP 04 117-393
[3]  
Watamura S(2009)-field background JHEP 06 086-598
[4]  
Asakawa T(2010)Noncommutative J. Geom. Phys. 60 375-1912
[5]  
Mori M(2013) gravity coupled to fermions Gen. Relativ. Gravit. 45 581-199
[6]  
Watamura S(2014)Noncommutative gravity solutions JHEP 11 103-71
[7]  
Aschieri P(2013)Noncommutative gauge fields coupled to noncommutative gravity Phys. Rev. D 87 024017-3532
[8]  
Castellani L(2018)Noncommutative Chern-Simons gauge and gravity theories and their geometric Seiberg-Witten map JHEP 02 036 [arXiv:1710.11467 [hep-th]]-152
[9]  
Aschieri P(2006)Noncommutative gravity at second order via Seiberg-Witten map Class. Quantum Gravity 23 1883-255
[10]  
Castellani L(2009)Nonassociative differential geometry and gravity with non-geometric fluxes Lect. Notes Phys. 774 1-638