Nontrivial Solutions for Fractional Schrödinger Equations with Electromagnetic Fields and Critical or Supercritical Growth

被引:0
作者
Quanqing Li
Jianjun Nie
Wenbo Wang
机构
[1] Honghe University,Department of Mathematics
[2] North China Electric Power University,School of Mathematics and Physics
[3] Yunnan University,Department of Mathematics and Statistics
来源
Qualitative Theory of Dynamical Systems | 2024年 / 23卷
关键词
Fractional Schrödinger equation; Fractional magnetic operator; Critical or supercritical growth; 35J20; 35J50; 35J15; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical growth (-Δ)Asu+V(x)u=λ|u|p-2u+f(x,|u|2)u,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )_A^su+V(x)u=\lambda |u|^{p-2}u+ f(x,|u|^2)u, \ x \in \mathbb {R}^N, \end{aligned}$$\end{document}where (-Δ)As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_A^s$$\end{document} is the fractional magnetic operator with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document}, 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_s^*=\frac{2N}{N-2s}$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, V∈C(RN,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \in C(\mathbb {R}^N,\mathbb {R})$$\end{document} and A∈C(RN,RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \in C(\mathbb {R}^N, \mathbb {R}^N)$$\end{document} are the electric and magnetic potentials, respectively. When V and f are asymptotically periodic in x, and f is a continuous function and there exists 2<q<2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2< q<2_s^*$$\end{document} such that |f(x,t)|≤C(1+|t|q-22)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f(x,t)|\le C(1+|t|^{\frac{q-2}{2}})$$\end{document} for all (x, t), for 2s∗≤p<22s∗-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2_s^*\le p<22^{*}_{s}-q$$\end{document}. For any D>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D>0$$\end{document} fixed, if λ∈(0,D]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,D]$$\end{document} we prove that the equation has a nontrivial solution by the truncation method. Our method can provide a prior L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-estimate.
引用
收藏
相关论文
共 68 条
  • [1] Antonelli P(2014)On the XFEL Schrödinger equation: highly oscillatory magnetic potentials and time averaging Arch. Ration. Mech. Anal. 211 711-732
  • [2] Athanassoulis A(2018)Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity J. Differ. Equ. 264 3336-3368
  • [3] Hajaiej H(2016)Existence and concentration of solution for a class of fractional elliptic equation in Calc. Var. Partial Differ. Equ. 55 1-19
  • [4] Markowich P(2019) via penalization method J. Math. Pures Appl. 124 123-1260
  • [5] Ambrosio V(2020)Properties of ground states of nonlinear Schrödinger equations under a weak constant magnetic field Z. Angew. Math. Phys. 71 129-627
  • [6] d’Avenia P(2012)Fractional Schrödinger equations involving potential vanishing at infinity and super-critical exponents J. Math. Phys. 53 043507-216
  • [7] Alves CO(2007)Bound state for the fractional Schrödinger equation with unbounded potential Commun. Partial Differ. Equ. 32 1245-451
  • [8] Miyagaki OH(2015)An extension problem related to the fractional Laplacian J. Differ. Equ. 259 596-24
  • [9] Bonheure D(2013)Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field Matematiche 68 201-573
  • [10] Nys M(2011)Existence and symmetry results for a Schrödinger type problem involving the fractional Lapacian Ann. Mat. 190 427-1262