Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems

被引:0
作者
Hongxing Rui
Chunjia Bi
机构
[1] Shandong University,School of Mathematics
[2] Yantai University,Department of Mathematics
来源
Frontiers of Mathematics in China | 2008年 / 3卷
关键词
Finite volume element (FVE) method; upwind method; Crouzeix-Raviart element; optimal order convergence; uniform convergence; convection-diffusion problem; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we construct an upwind finite volume element scheme based on the Crouzeix-Raviart nonconforming element for non-selfadjoint elliptic problems. These problems often appear in dealing with flow in porous media. We establish the optimal order H1-norm error estimate. We also give the uniform convergence under minimal elliptic regularity assumption
引用
收藏
页码:563 / 579
页数:16
相关论文
共 33 条
[1]  
Baba K.(1981)On a conservative upwind finite element scheme for convective diffusion equations RAIRO Numer Anal 15 3-25
[2]  
Tabata M.(1987)Some error estimates for the box method SIAM J Numer Anal 24 777-787
[3]  
Bank R. E.(2003)The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems Comp Meth Appl Mech Engrg 192 15-31
[4]  
Rose D. J.(1991)On the finite volume element method Numer Math 58 713-735
[5]  
Bi C. J.(1991)The finite volume element method for diffusion equations on general triangulations SIAM J Numer Anal 28 392-402
[6]  
Li L. K.(1999)A finite volume method based on the Crouzeix-Raviart element for elliptic PDE′s in two dimensions Numer Math 82 409-432
[7]  
Cai Z.(2002)Finite volume methods for elliptic PDE′s: A new approach Mathematical Modelling and Numerical Analysis 36 307-324
[8]  
Cai Z.(1999)Convergence and domain decomposition for nonconforming and mixed element methods for non-selfadjoint and indefinite problems Comp Meth Appl Mech Engrg 173 1-20
[9]  
Mandel J.(2000)Uniform convergence and preconditioning methods for projection nonconforming and mixed methods for non-selfadjoint and indefinite problems Comp Meth Appl Mech Engrg 185 75-89
[10]  
McCormick S.(1973)Conforming and non-conforming finite element methods for solving the stationary Stokes equations RAIRO Anal Numer 7 33-76