Approximation of analytic periodic functions by de la Vallée-Poussin sums

被引:0
作者
Rukasov V.I. [1 ]
Chaichenko S.O. [1 ]
机构
[1] Slavyansk Pedagogic Institute, Slavyansk
关键词
Periodic Function; Approximation Property; Asymptotic Equality; Analytic Periodic Function; Skii Problem;
D O I
10.1023/A:1024077332287
中图分类号
学科分类号
摘要
We investigate the approximation properties of the de la Vallée-Poussin sums on the classes CβqH ω. We obtain asymptotic equalities that, in certain cases, guarantee the solvability of the Kolmogorov-Nikol'skii problem for the de la Vallée-Poussin sums on the classes CβqH ω. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:2006 / 2024
页数:18
相关论文
共 6 条
[1]  
Stepanets A.I., Approximation of analytic continuous functions, Mat. Sb., 192, 1, pp. 113-138, (2001)
[2]  
Stepanets A.I., Classification and Approximation of Periodic Functions [in Russian], (1987)
[3]  
Nikol'skii S.M., Approximation of periodic functions by trigonometric polynomials in the mean, Izv. Akad. Nauk SSSR, Ser. Mat., 10, pp. 207-256, (1946)
[4]  
Stechkin S.B., Estimation of the remainder term of the Fourier series for differentiable functions, Trudy Mat. Inst. Akad. Nauk SSSR, Ser. Mat., 145, pp. 126-151, (1980)
[5]  
Rukasov V.I., Novikov O.A., Approximation of analytic functions the de la Vallée-Poussin sums, Fourier Series: Theory of Applications [in Russian], pp. 109-110, (1997)
[6]  
Stepanets A.I., Uniform Approximation of by Trigonometric Polynomials [in Russian], (1981)