On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system

被引:0
作者
Oleg Chalykh
Maxime Fairon
机构
[1] University of Leeds,School of Mathematics
[2] University of Glasgow,School of Mathematics and Statistics
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Quivers; Double Poisson brackets; Quasi-Hamiltonian reduction; Ruijsenaars-Schneider system; 70H06; 53D20; 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
We suggest a Hamiltonian formulation for the spin Ruijsenaars–Schneider system in the trigonometric case. Within this interpretation, the phase space is obtained by a quasi-Hamiltonian reduction performed on (the cotangent bundle to) a representation space of a framed Jordan quiver. For arbitrary quivers, analogous varieties were introduced by Crawley-Boevey and Shaw, and their interpretation as quasi-Hamiltonian quotients was given by Van den Bergh. Using Van den Bergh’s formalism, we construct commuting Hamiltonian functions on the phase space and identify one of the flows with the spin Ruijsenaars–Schneider system. We then calculate all the Poisson brackets between local coordinates, thus answering an old question of Arutyunov and Frolov. We also construct a complete set of commuting Hamiltonians and integrate all the flows explicitly.
引用
收藏
页码:2893 / 2940
页数:47
相关论文
共 63 条
  • [1] Alekseev A(2002)Quasi-Poisson manifolds Can. J. Math. 54 3-29
  • [2] Kosmann-Schwarzbach Y(1998)Lie group valued moment maps J. Differ. Geom. 48 445-495
  • [3] Meinrenken E(1998)On the Hamiltonian structure of the spin Ruijsenaars–Schneider model J. Phys. A 31 4203-4216
  • [4] Alekseev A(1997)Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double J. Phys. A 30 5051-5063
  • [5] Malkin A(1996)The classical r-matrix for the relativistic Ruijsenaars–Schneider system Phys. Lett. A 212 50-54
  • [6] Meinrenken E(2003)Non-commutative integrability, moment map and geodesic flows Ann. Glob. Anal. Geom. 23 305-321
  • [7] Arutyunov GE(1997)A Int. Math. Res. Not. 14 667-686
  • [8] Frolov SA(1996)-analogue of the type Phys. Lett. B 380 296-302
  • [9] Arutyunov GE(2011) Dunkl operator and integral kernel Adv. Math. 226 2796-2824
  • [10] Frolov SA(2017)Affine Toda solitons and systems of Calogero-Moser type J. Geom. Phys. 121 413-437