Assessment of soil erosion, flood risk and groundwater potential of Dhanari watershed using remote sensing and geographic information system, district Uttarkashi, Uttarakhand, India

被引:0
|
作者
Ashish Rawat
M. P. S. Bisht
Y. P. Sundriyal
S. Banerjee
Vidushi Singh
机构
[1] H N B Garhwal University,Department of Geology
[2] Uttarakhand Space Application Center,Department of Geology
[3] Banaras Hindu University,undefined
来源
Applied Water Science | 2021年 / 11卷
关键词
Morphometry; Dhanari watershed; GIS; Remote sensing; Hypsometry; Vulnerability; Groundwater; Erosion; Flood;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative morphometric analysis of Dhanari watershed has been done using remote sensing and Geographical Information System (GIS). The impact of climate, lithology, tectonics, structural antecedents, vegetation cover and land use on hydrological processes is assessed by quantifying geomorphic parameters. The Dhanari River (a tributary of the Bhagirathi River) and its tributaries Dhanpati Gad and Kali Gad forms Dhanari watershed covering 91.8  Km2 area. Several geomorphic aspects viz. linear, areal, relief were computed to comprehend potentials of soil erosion, groundwater, flood vulnerability and the geomorphic response of watershed. LISS-III image is used to generate the Land Use and Land Cover (LULC) map and assess the watershed dynamics. Values of computed hypsometric integral and morphometric parameters viz. drainage density (Dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{d}}}$$\end{document}), stream frequency (Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{s}}}$$\end{document}), stream length ratio (Lur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{ur}}}}$$\end{document}), bifurcation ratio (Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{b}}}$$\end{document}), rho coefficient (ρ), drainage texture (Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{t}}}$$\end{document}), circularity ratio (Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{c}}}$$\end{document}), relief ratio (Rhl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{hl}}}}$$\end{document}), elongation ratio (Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{e}}}$$\end{document}), form factor (Ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{f}}}$$\end{document}), basin shape (Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{{\text{s}}}$$\end{document}), drainage intensity (Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{i}}}$$\end{document}), compactness coefficient (Cc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{{\text{c}}}$$\end{document}) and infiltration number (If\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{{\text{f}}}$$\end{document}) have shown a moderate and steady erosion rate, with low groundwater potential and low to moderate flood vulnerability in the watershed. Hypsometry presents a dependable geomorphic parameter to understand the erosion and geomorphic response of a watershed to hydrological processes. Hypsometric integral value (0.51) of Dhanari watershed suggests a mature topography with steady erosion in the watershed.
引用
收藏
相关论文
共 50 条
  • [41] Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis
    Kessar, Cherif
    Benkesmia, Yamina
    Blissag, Bilal
    Kebir, Lahsen Wahib
    JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING, 2021, 9 (01): : 45 - 64
  • [42] IMPACT OF LAND USE CHANGE ON EROSION RISK: AN INTEGRATED REMOTE SENSING, GEOGRAPHIC INFORMATION SYSTEM AND MODELING METHODOLOGY
    Leh, M.
    Bajwa, S.
    Chaubey, I.
    LAND DEGRADATION & DEVELOPMENT, 2013, 24 (05) : 409 - 421
  • [43] Mapping Groundwater Potential for Irrigation, by Geographical Information System and Remote Sensing Techniques: A Case Study of District Lower Dir, Pakistan
    Sarwar, Abid
    Ahmad, Sajid Rashid
    Rehmani, Muhammad Ishaq Asif
    Javid, Muhammad Asif
    Gulzar, Shazia
    Shehzad, Muhammad Ahmad
    Dar, Javeed Shabbir
    Baazeem, Alaa
    Iqbal, Muhammad Aamir
    Rahman, Muhammad Habib Ur
    Skalicky, Milan
    Brestic, Marian
    El Sabagh, Ayman
    ATMOSPHERE, 2021, 12 (06)
  • [44] Flood control management recommendation of Citarum Hilir Sub-watersheds using remote sensing and geographic information system approach
    Melati, Pegi
    Fouristi, Dishilda
    Malahayati, Shabira P.
    Albadara, Yasmin O. S.
    Annisa, Dyah R.
    Harahap, Setiawan D.
    Widyatmanti, Wirastuti
    SEVENTH GEOINFORMATION SCIENCE SYMPOSIUM 2021, 2021, 12082
  • [45] Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System
    Al-Aarajy, Khalid H. Abbas
    Zaeen, Ahmed A.
    Abood, Khaleel I.
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2024, 13 (01): : 396 - 403
  • [46] Carbon stock assessment of mangroves using remote sensing and geographic information system
    Bindu, G.
    Rajan, Poornima
    Jishnu, E. S.
    Joseph, K. Ajith
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2020, 23 (01) : 1 - 9
  • [47] Fire danger assessment using remote sensing and geographic information system Technologies
    Chuvieco, Emilio
    de la Riva, Juan
    REMOTE SENSING FOR A CHANGING EUROPE, 2009, : 412 - 419
  • [48] Remote sensing, and (GIS) approach, for morphometric assessment and sub-watershed prioritization according to soil erosion and groundwater potential in an endorheic semi-arid area of Algeria
    Naouel Dali
    Omar Ramzi Ziouch
    Habiba Dali
    Tarek Daifallah
    Berkani Cherifa
    Hassad Sara
    Arabian Journal of Geosciences, 2023, 16 (1)
  • [49] Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India
    Singh, Gurjeet
    Panda, Rabindra Kumar
    INTERNATIONAL SOIL AND WATER CONSERVATION RESEARCH, 2017, 5 (03) : 202 - 211
  • [50] Monitoring shoreline changes along Andhra coast of India using remote sensing and geographic information system
    Tyagi, Sindhu
    Rai, S. C.
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2020, 49 (02) : 218 - 224