Assessment of soil erosion, flood risk and groundwater potential of Dhanari watershed using remote sensing and geographic information system, district Uttarkashi, Uttarakhand, India

被引:0
|
作者
Ashish Rawat
M. P. S. Bisht
Y. P. Sundriyal
S. Banerjee
Vidushi Singh
机构
[1] H N B Garhwal University,Department of Geology
[2] Uttarakhand Space Application Center,Department of Geology
[3] Banaras Hindu University,undefined
来源
Applied Water Science | 2021年 / 11卷
关键词
Morphometry; Dhanari watershed; GIS; Remote sensing; Hypsometry; Vulnerability; Groundwater; Erosion; Flood;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative morphometric analysis of Dhanari watershed has been done using remote sensing and Geographical Information System (GIS). The impact of climate, lithology, tectonics, structural antecedents, vegetation cover and land use on hydrological processes is assessed by quantifying geomorphic parameters. The Dhanari River (a tributary of the Bhagirathi River) and its tributaries Dhanpati Gad and Kali Gad forms Dhanari watershed covering 91.8  Km2 area. Several geomorphic aspects viz. linear, areal, relief were computed to comprehend potentials of soil erosion, groundwater, flood vulnerability and the geomorphic response of watershed. LISS-III image is used to generate the Land Use and Land Cover (LULC) map and assess the watershed dynamics. Values of computed hypsometric integral and morphometric parameters viz. drainage density (Dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{d}}}$$\end{document}), stream frequency (Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{s}}}$$\end{document}), stream length ratio (Lur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{ur}}}}$$\end{document}), bifurcation ratio (Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{b}}}$$\end{document}), rho coefficient (ρ), drainage texture (Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{t}}}$$\end{document}), circularity ratio (Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{c}}}$$\end{document}), relief ratio (Rhl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{hl}}}}$$\end{document}), elongation ratio (Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{e}}}$$\end{document}), form factor (Ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{f}}}$$\end{document}), basin shape (Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{{\text{s}}}$$\end{document}), drainage intensity (Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{i}}}$$\end{document}), compactness coefficient (Cc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{{\text{c}}}$$\end{document}) and infiltration number (If\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{{\text{f}}}$$\end{document}) have shown a moderate and steady erosion rate, with low groundwater potential and low to moderate flood vulnerability in the watershed. Hypsometry presents a dependable geomorphic parameter to understand the erosion and geomorphic response of a watershed to hydrological processes. Hypsometric integral value (0.51) of Dhanari watershed suggests a mature topography with steady erosion in the watershed.
引用
收藏
相关论文
共 50 条
  • [31] Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey, Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing
    Ozsoy, Gokhan
    Aksoy, Ertugrul
    Dirim, M. Sabri
    Tumsavas, Zeynal
    ENVIRONMENTAL MANAGEMENT, 2012, 50 (04) : 679 - 694
  • [32] Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey, Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing
    Gokhan Ozsoy
    Ertugrul Aksoy
    M. Sabri Dirim
    Zeynal Tumsavas
    Environmental Management, 2012, 50 : 679 - 694
  • [33] Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India
    Pitchaimani, V. Stephen
    Narayanan, M. S. S.
    Abishek, R. S.
    Aswin, S. K.
    Joe, R. J. Jerin
    JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING, 2024, 12 (02):
  • [34] Land productivity assessment using remote sensing and geographic information system
    Singh, K. N.
    Raju, N. S.
    Rao, A. Subba
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2006, 76 (02): : 81 - 84
  • [35] Development of a framework for fire risk assessment using remote sensing and geographic information system technologies
    Chuvieco, Emilio
    Aguado, Inmaculada
    Yebra, Marta
    Nieto, Hector
    Salas, Javier
    Pilar Martin, M.
    Vilar, Lara
    Martinez, Javier
    Martin, Susana
    Ibarra, Paloma
    de la Riva, Juan
    Baeza, Jaime
    Rodriguez, Francisco
    Molina, Juan R.
    Herrera, Miguel A.
    Zamora, Ricardo
    ECOLOGICAL MODELLING, 2010, 221 (01) : 46 - 58
  • [36] Groundwater quality mapping using geographic information system in Trichy district, Tamilnadu, India
    Venkatesan, G.
    Senthil, M. S.
    WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY, 2018, 18 (06): : 2118 - 2132
  • [37] Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India
    Jasmin, Ismail
    Mallikarjuna, P.
    HYDROGEOLOGY JOURNAL, 2011, 19 (04) : 729 - 740
  • [38] Erosion Risk Modelling Using Geographic Information System in Beringin Watershed, Semarang City
    Nugraha, A. L.
    Firdaus, H. S.
    Sasmito, Bandi
    2018 4TH INTERNATIONAL SYMPOSIUM ON GEOINFORMATICS (ISYG), 2018,
  • [39] Water resources development action plan for Sasti watershed, Chandrapur district, Maharashtra using remote sensing and Geographic Information System
    Rokade V.M.
    Kundal R.
    Joshi A.K.
    Journal of the Indian Society of Remote Sensing, 2004, 32 (4) : 363 - 372
  • [40] Spatial assessment of soil erosion rate using remote sensing and GIS techniques in Mediterranean Watershed
    El Harche, Sanae
    Chikhaoui, Mohamd
    Mustapha, Naimi
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 190 - 193