Assessment of soil erosion, flood risk and groundwater potential of Dhanari watershed using remote sensing and geographic information system, district Uttarkashi, Uttarakhand, India

被引:0
|
作者
Ashish Rawat
M. P. S. Bisht
Y. P. Sundriyal
S. Banerjee
Vidushi Singh
机构
[1] H N B Garhwal University,Department of Geology
[2] Uttarakhand Space Application Center,Department of Geology
[3] Banaras Hindu University,undefined
来源
Applied Water Science | 2021年 / 11卷
关键词
Morphometry; Dhanari watershed; GIS; Remote sensing; Hypsometry; Vulnerability; Groundwater; Erosion; Flood;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative morphometric analysis of Dhanari watershed has been done using remote sensing and Geographical Information System (GIS). The impact of climate, lithology, tectonics, structural antecedents, vegetation cover and land use on hydrological processes is assessed by quantifying geomorphic parameters. The Dhanari River (a tributary of the Bhagirathi River) and its tributaries Dhanpati Gad and Kali Gad forms Dhanari watershed covering 91.8  Km2 area. Several geomorphic aspects viz. linear, areal, relief were computed to comprehend potentials of soil erosion, groundwater, flood vulnerability and the geomorphic response of watershed. LISS-III image is used to generate the Land Use and Land Cover (LULC) map and assess the watershed dynamics. Values of computed hypsometric integral and morphometric parameters viz. drainage density (Dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{d}}}$$\end{document}), stream frequency (Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{s}}}$$\end{document}), stream length ratio (Lur\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{ur}}}}$$\end{document}), bifurcation ratio (Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{b}}}$$\end{document}), rho coefficient (ρ), drainage texture (Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{t}}}$$\end{document}), circularity ratio (Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{c}}}$$\end{document}), relief ratio (Rhl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{hl}}}}$$\end{document}), elongation ratio (Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{\text{e}}}$$\end{document}), form factor (Ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\text{f}}}$$\end{document}), basin shape (Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{{\text{s}}}$$\end{document}), drainage intensity (Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\text{i}}}$$\end{document}), compactness coefficient (Cc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{{\text{c}}}$$\end{document}) and infiltration number (If\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{{\text{f}}}$$\end{document}) have shown a moderate and steady erosion rate, with low groundwater potential and low to moderate flood vulnerability in the watershed. Hypsometry presents a dependable geomorphic parameter to understand the erosion and geomorphic response of a watershed to hydrological processes. Hypsometric integral value (0.51) of Dhanari watershed suggests a mature topography with steady erosion in the watershed.
引用
收藏
相关论文
共 50 条
  • [21] A Study on the Extraction of Digital Elevation Model (DEM) using Remote Sensing and Geographic Information System (GIS) for Flood Risk Assessment
    Sulaiman, Nur Aishah
    Husain, Faizah
    Hashim, Khairil Afendy
    Ma'arof, Ismail
    Samad, Abd. Manan
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2012), 2012, : 568 - 573
  • [22] Assessment of potential changes in soil erosion using remote sensing and GIS: a case study of Dacaozi Watershed, China
    Huang, Jun
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (12)
  • [23] Assessment of potential changes in soil erosion using remote sensing and GIS: a case study of Dacaozi Watershed, China
    Jun Huang
    Environmental Monitoring and Assessment, 2018, 190
  • [24] An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS
    H. Vijith
    M. Suma
    V. B. Rekha
    C. Shiju
    P. G. Rejith
    Arabian Journal of Geosciences, 2012, 5 : 797 - 805
  • [25] An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS
    Vijith, H.
    Suma, M.
    Rekha, V. B.
    Shiju, C.
    Rejith, P. G.
    ARABIAN JOURNAL OF GEOSCIENCES, 2012, 5 (04) : 797 - 805
  • [26] Electrical resistivity, remote sensing and geographic information system approach for mapping groundwater potential zones in coastal aquifers of Gurpur watershed
    Virupaksha, H. S.
    Lokesh, K. N.
    GEOCARTO INTERNATIONAL, 2021, 36 (08) : 888 - 902
  • [27] Assessment of soil erosion risk using RUSLE model, SATEEC system, remote sensing, and GIS techniques: a case study of Navroud watershed
    Mahboobeh Fallah
    Hosseinali Bahrami
    Hossein Asadi
    Environmental Earth Sciences, 2023, 82
  • [28] Assessment of soil erosion risk using RUSLE model, SATEEC system, remote sensing, and GIS techniques: a case study of Navroud watershed
    Fallah, Mahboobeh
    Bahrami, Hosseinali
    Asadi, Hossein
    ENVIRONMENTAL EARTH SCIENCES, 2023, 82 (17)
  • [29] Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system
    Singh, Chander Kumar
    Shashtri, Satyanarayan
    Singh, Amit
    Mukherjee, Saumitra
    ENVIRONMENTAL EARTH SCIENCES, 2011, 62 (04) : 871 - 881
  • [30] Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system
    Chander Kumar Singh
    Satyanarayan Shashtri
    Amit Singh
    Saumitra Mukherjee
    Environmental Earth Sciences, 2011, 62 : 871 - 881