The Acoustic Limit for the Boltzmann Equation

被引:0
作者
Claude Bardos
François Golse
C. David Levermore
机构
[1] Université Paris VII¶& CMLA,
[2] Ecole Normale Supéerieure Cachan¶61 avenue du Président Wilson,undefined
[3] ¶94235 Cachan cedex,undefined
[4] France,undefined
[5] Université Paris VII¶& Institut Universitaire de France¶DMA,undefined
[6] Ecole Normale Supérieure¶45 rue d'Ulm¶75230 Paris cedex 05,undefined
[7] France,undefined
[8] Department of Mathematics¶University of Arizona¶Tucson,undefined
[9] Arizona 85721,undefined
[10] USA,undefined
来源
Archive for Rational Mechanics and Analysis | 2000年 / 153卷
关键词
Initial Data; Boltzmann Equation; Euler Equation; Spatial Domain; Fluid State;
D O I
暂无
中图分类号
学科分类号
摘要
The acoustic equations are the linearization of the compressible Euler equations about a spatially homogeneous fluid state. We first derive them directly from the Boltzmann equation as the formal limit of moment equations for an appropriately scaled family of Boltzmann solutions. We then establish this limit for the Boltzmann equation considered over a periodic spatial domain for bounded collision kernels. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations that converge entropically (and hence strongly in L1) to a unique limit governed by a solution of the acoustic equations for all time, provided that its initial fluctuations converge entropically to an appropriate limit associated to any given L2 initial data of the acoustic equations. The associated local conservation laws are recovered in the limit.
引用
收藏
页码:177 / 204
页数:27
相关论文
empty
未找到相关数据