On automorphic Banach spaces

被引:0
|
作者
Yolanda Moreno
Anatolij Plichko
机构
[1] Universidad de Extremadura,Departamento de Matemáticas, Escuela Politécnica
[2] Politechnika Krakowska im. Tadeusza Kościuszki,Instytut Matematyki
来源
Israel Journal of Mathematics | 2009年 / 169卷
关键词
Banach Space; Dimensional Subspace; Israel Journal; Countable Subset; Density Character;
D O I
暂无
中图分类号
学科分类号
摘要
A Banach space X will be called extensible if every operator E → X from a subspace E ⊂ X can be extended to an operator X → X. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace E ⊂ X every into isomorphism T: E → X for which dens X/E = dens X/TE can be extended to an automorphism X → X. Lindenstrauss and Rosenthal proved that c0 is automorphic and conjectured that c0 and ℓ2 are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of c0(Γ), for Γ uncountable. That c0(Γ) is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of ℓnp, 1 ≤ p < ∞, p ≠ 2. We derive that infinite dimensional spaces such as Lp(μ), p ≠ 2, C(K) spaces not isomorphic to c0 for K metric compact, subspaces of c0 which are not isomorphic to c0, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic.
引用
收藏
相关论文
共 50 条
  • [41] Nonexpansive retracts in Banach spaces
    Kopecka, Eva
    Reich, Simeon
    FIXED POINT THEORY AND ITS APPLICATIONS, 2007, 77 : 161 - +
  • [42] On the Symmetrizations of ε-Isometries on Banach Spaces
    Lixin Cheng
    Longfa Sun
    Functional Analysis and Its Applications, 2019, 53 : 74 - 77
  • [43] Dynamical entropy in Banach spaces
    David Kerr
    Hanfeng Li
    Inventiones mathematicae, 2005, 162 : 649 - 686
  • [44] Criteria for convexity in Banach spaces
    Kanellopoulos, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2725 - 2733
  • [45] Lagrange approximation in Banach spaces
    Lisa Nilsson
    Damián Pinasco
    Ignacio Zalduendo
    Czechoslovak Mathematical Journal, 2015, 65 : 281 - 288
  • [46] MULTIDISKCYCLIC OPERATORS ON BANACH SPACES
    Bamerni, Nareen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (04): : 517 - 522
  • [47] BANACH SPACES FOR THE FEYNMAN INTEGRAL
    Gill, Tepper L.
    Zachary, Woodford W.
    REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 267 - 310
  • [48] SHIFTS ON PRODUCTS OF BANACH SPACES
    Moshokoa, S. P.
    Rajagopalan, M.
    Sundaresan, K.
    QUAESTIONES MATHEMATICAE, 2011, 34 (03) : 327 - 333
  • [49] Analytic sets of Banach spaces
    Godefroy, Gilles
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2010, 104 (02) : 365 - 374
  • [50] On a Cauchy Problem in Banach Spaces
    Lixin Cheng
    Wen Zhang
    Results in Mathematics, 2023, 78